Li2SnO3 derived secondary Li–Sn alloy electrode for lithium-ion batteries

作者: DW Zhang , SQ Zhang , Y Jin , TH Yi , S Xie

DOI: 10.1016/J.JALLCOM.2005.05.053

关键词:

摘要: Abstract As a possible high-capacity Li-ion battery anode material, Li2SnO3 was prepared via solid-state reaction route and sol–gel route, separately. Its electrochemical performance tested in coin-type cells with metallic Li as the counter electrode. The results show that derived has uniform nano-sized particles (200–300 nm) can deliver better reversible capacity (380 mAh/g after 50 cycles voltage window of 0–1 V) than from route. characterizations by means galvanostatic cycling, cyclic voltammetry ex situ X-ray diffraction indicate process lithiation proceeds an initial structural reduction composite oxide into Sn-metal Li2O followed Li–Sn alloy formation matrix. Due to buffer role matrix, reversibility secondary electrode is largely secured.

参考文章(19)
L. Fang, B.V.R. Chowdari, Sn–Ca amorphous alloy as anode for lithium ion battery Journal of Power Sources. ,vol. 97, pp. 181- 184 ,(2001) , 10.1016/S0378-7753(01)00615-2
Yan-Na Nuli, Sheng-Li Zhao, Qi-Zong Qin, Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries Journal of Power Sources. ,vol. 114, pp. 113- 120 ,(2003) , 10.1016/S0378-7753(02)00531-1
S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, J-M. Tarascon, Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium Journal of The Electrochemical Society. ,vol. 148, ,(2001) , 10.1149/1.1353566
Ian A. Courtney, W. R. McKinnon, J. R. Dahn, On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium Journal of The Electrochemical Society. ,vol. 146, pp. 59- 68 ,(1999) , 10.1149/1.1391565
T. Brousse, R. Retoux, U. Herterich, D. M. Schleich, Thin‐Film Crystalline SnO2‐Lithium Electrodes Journal of The Electrochemical Society. ,vol. 145, pp. 1- 4 ,(1998) , 10.1149/1.1838201
Weifeng Liu, Xuejie Huang, Zhaoxiang Wang, Hong Li, Liquan Chen, Studies of Stannic Oxide as an Anode Material for Lithium‐Ion Batteries Journal of The Electrochemical Society. ,vol. 145, pp. 59- 62 ,(1998) , 10.1149/1.1838211
R Huggins, Lithium alloy negative electrodes formed from convertible oxides Solid State Ionics. ,vol. 113-115, pp. 57- 67 ,(1998) , 10.1016/S0167-2738(98)00275-6
Ian A. Courtney, J. R. Dahn, Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites Journal of The Electrochemical Society. ,vol. 144, pp. 2045- 2052 ,(1997) , 10.1149/1.1837740
J.O. Besenhard, J. Yang, M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? Journal of Power Sources. ,vol. 68, pp. 87- 90 ,(1997) , 10.1016/S0378-7753(96)02547-5
Feng Huang, Zhengyong Yuan, Hui Zhan, Yunhong Zhou, Jutang Sun, A novel tin-based nanocomposite oxide as negative-electrode materials for Li-ion batteries Materials Letters. ,vol. 57, pp. 3341- 3345 ,(2003) , 10.1016/S0167-577X(03)00070-3