The Kolmogorov-Riesz Theorem and Some Compactness Criterions of Bounded Subsets in Weighted Variable Exponent Amalgam and Sobolev Spaces.

作者: Ismail Aydin , Cihan Unal

DOI: 10.1007/S13348-019-00262-5

关键词:

摘要: We study totally bounded subsets in weighted variable exponent amalgam and Sobolev spaces. Moreover, this paper includes several detailed generalized results of some compactness criterions these

参考文章(33)
Gerd Grubb, Distributions and Operators ,(2008)
Przemysław Górka, Anna Macios, Almost everything you need to know about relatively compact sets in variable Lebesgue spaces Journal of Functional Analysis. ,vol. 269, pp. 1925- 1949 ,(2015) , 10.1016/J.JFA.2015.06.024
Humberto Rafeiro, Kolmogorov compactness criterion in variable exponent Lebesgue spaces arXiv: Functional Analysis. ,(2009)
Ondrej Kováčik, Jiří Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$ Czechoslovak Mathematical Journal. ,vol. 41, pp. 592- 618 ,(1991) , 10.21136/CMJ.1991.102493
Julian Musielak, Orlicz Spaces and Modular Spaces ,(1983)
Qiao Liu, Compact trace in weighted variable exponent Sobolev spaces W1,p(x)(Ω;v0,v1) Journal of Mathematical Analysis and Applications. ,vol. 348, pp. 760- 774 ,(2008) , 10.1016/J.JMAA.2008.08.004
Harald Hanche-Olsen, Helge Holden, Addendum to “The Kolmogorov–Riesz compactness theorem” [Expo. Math. 28 (2010) 385–394] Expositiones Mathematicae. ,vol. 34, pp. 243- 245 ,(2016) , 10.1016/J.EXMATH.2015.12.003