A Maximum Entropy Characterization of Symmetric Kotz Type and Burr Multivariate Distributions

作者: G. Aulogiaris , K. Zografos

DOI: 10.1007/BF02603001

关键词:

摘要: In this paper a maximum entropy characterization is presented for Kotz type symmetric multivariate distributions as well Burr and Pareto III distributions. Analytical formulae the Shannon of these are also derived.

参考文章(20)
Henryk Gzyl, The Method of Maximum Entropy ,(1995)
Silviu Guiasu, A classification of the main probability distributions by minimizing the weighted logarithmic measure of deviation Annals of the Institute of Statistical Mathematics. ,vol. 42, pp. 269- 279 ,(1990) , 10.1007/BF00050836
Vasile C. Preda, The student distribution and the principle of maximum entropy Annals of the Institute of Statistical Mathematics. ,vol. 34, pp. 335- 338 ,(1982) , 10.1007/BF02481032
M. Menéndez, D. Morales, L. Pardo, Maximum entropy principle and statistical inference on condensed ordered data Statistics & Probability Letters. ,vol. 34, pp. 85- 93 ,(1997) , 10.1016/S0167-7152(96)00169-1
E. T. Jaynes, Information Theory and Statistical Mechanics Physical Review. ,vol. 106, pp. 620- 630 ,(1957) , 10.1103/PHYSREV.106.620
Amos Golan, Information and Entropy Econometrics—Editor's View Journal of Econometrics. ,vol. 107, pp. 1- 15 ,(2002) , 10.1016/S0304-4076(01)00110-5
George B. Arfken, Mathematical Methods for Physicists ,(1966)
Ehsan S. Soofi, Nader Ebrahimi, Mohamed Habibullah, Information distinguishability with application to analysis of failure data Journal of the American Statistical Association. ,vol. 90, pp. 657- 668 ,(1995) , 10.1080/01621459.1995.10476560