Toeplitz Operators on Flows

作者: Raúl E Curto , Paul S Muhly , Jingbo Xia

DOI: 10.1016/0022-1236(90)90133-6

关键词:

摘要: Abstract Let R act continuously on a compact Hausdorff space X giving rise to flow , let ϑ ϵ C ( ), and T x denote the Toeplitz operator H 2 (R) determined by function defined t ) = + ). In this paper, we investigate relation between spectral properties of dynamical flow, value distribution theory ϑ. The analysis proceeds imbedding in type II ∞ factor computing real-valued index la Connes. Our sharpest invertibility result asserts that if is strictly ergodic asymptotic cycle injective 1 Z), then invertible only does not vanish determines zero element Z). This generalizes classical Gohberg Krein its extension operators with almost periodic symbols due Coburn, Douglas, Schaeffer Singer. When analytic, sense belongs for all relate density zeros upper half-plane. Much our efforts achieve are devoted generalizing arbitrary flows analytic functions developed Bohr, Jessen, Tornehave others.

参考文章(27)
J. L. B. Cooper, J. Dixmier, Les Algebres d'Operateurs dans l'Espace Hilbertien The Mathematical Gazette. ,vol. 42, pp. 335- ,(1958) , 10.2307/3610495
Carl Gustav Reinfold Carson, Cohomology classes in harmonic analysis University Microfilms. ,(1973)
Vladimir Igorevich Arnol'd, Ergodic problems of classical mechanics ,(1968)
Alain Connes, Sur la theorie non commutative de l’integration Springer Berlin Heidelberg. pp. 19- 143 ,(1979) , 10.1007/BFB0062614
Henry Helson, David Lowdenslager, Prediction theory and fourier series in several variables. II Acta Mathematica. ,vol. 106, pp. 165- 202 ,(1958) , 10.1007/BF02392425
Vibeke Borchsenius, Børge Jessen, Mean motions and values of the Riemann zeta function Acta Mathematica. ,vol. 80, pp. 97- 166 ,(1948) , 10.1007/BF02393647
Paul S. Muhly, Function algebras and flows II Arkiv för Matematik. ,vol. 11, pp. 203- 213 ,(1973) , 10.1007/BF02388517