Reproductive Exponential Families

作者: O. Barndorff-Nielsen , P. Blaesild

DOI: 10.1214/AOS/1176346244

关键词:

摘要: Consider a full and steep exponential model $\mathscr{M}$ with function $a(\theta)b(x)\exp\{\theta \cdot t(x)\}$ sample $x_1, \cdots, x_n$ from $\mathscr{M}$. Let $\bar{t} = \{t(x_1) + \cdots t(x_n)\}/n$ let (\bar{t}_1, \bar{t}_2)$ be partition of the canonical statistic $\bar{t}$. We say that is reproductive in $t_2$ if there exists $H$ independent $n$ such for every marginal $\bar{t}_2$ $n\theta$ as parameter $(H(\bar{t}_2), statistic. Furthermore we call strongly these models are all contained $n 1$. Conditions properties to hold discussed. Reproductive shown allow decomposition theorem analogous standard $\chi^2$-distributed quadratic forms normal variates. A number new adduced illustrate concepts also seem some interest. In particular, combination inverse Gaussian distributions discussed detail.

参考文章(7)
Ole Barndorff-Nielsen, Information and exponential families ,(1970)
Peter McCullagh, John Ashworth Nelder, Generalized Linear Models ,(1983)
M. C. K. Tweedie, Statistical Properties of Inverse Gaussian Distributions. II Annals of Mathematical Statistics. ,vol. 28, pp. 696- 705 ,(1957) , 10.1214/AOMS/1177706881
Shaul K. Bar-Lev, Benjamin Reiser, An Exponential Subfamily which Admits UMPU Tests Based on a Single Test Statistic Annals of Statistics. ,vol. 10, pp. 979- 989 ,(1982) , 10.1214/AOS/1176345888
O. Barndorff-Nielsen, P. Blaesild, Exponential Models with Affine Dual Foliations Annals of Statistics. ,vol. 11, pp. 753- 769 ,(1983) , 10.1214/AOS/1176346243
O. BARNDORFF-NIELSEN, On a formula for the distribution of the maximum likelihood estimator Biometrika. ,vol. 70, pp. 343- 365 ,(1983) , 10.1093/BIOMET/70.2.343