Classification Approach Based on Rough Mereology

作者: Mahmood A. Mahmood , Nashwa El-Bendary , Aboul Ella Hassanien , Hesham A. Hefny

DOI: 10.1007/978-3-319-01778-5_18

关键词:

摘要: This article presents a classification approach based on granular computing combined with rough set. The proposed used the theory of mereology and fuzzification in order to classify input datasets into sets optimized granules. was applied five UC Irvine Machine Learning Repository. Abalone dataset that consists 4177 objects eight attributes selected as an illustrative example. Empirically obtained experimental results demonstrated better performance compared other experienced approaches.

参考文章(9)
Tsau Young (’T. Y.’) Lin, Churn-Jung Liau, Granular Computing and Rough Sets Data Mining and Knowledge Discovery Handbook. pp. 535- 561 ,(2005) , 10.1007/0-387-25465-X_24
Remco C. Veltkamp, Michiel Hagedoorn, Shape Similarity Measures, Properties and Constructions Lecture Notes in Computer Science. pp. 467- 476 ,(2000) , 10.1007/3-540-40053-2_41
Image Analysis and Recognition Lecture Notes in Computer Science. ,vol. 5627, ,(2004) , 10.1007/978-3-319-11755-3
Denise Guliato, Jean Carlo de Sousa Santos, Granular Computing and Rough Sets to Generate Fuzzy Rules Lecture Notes in Computer Science. pp. 317- 326 ,(2009) , 10.1007/978-3-642-02611-9_32
Oded Maimon, Lior Rokach, Data Mining and Knowledge Discovery Handbook ,(2005)
Jiujiang An, Guoyin Wang, Yu Wu, Quan Gan, A rule generation algorithm based on granular computing granular computing. ,vol. 1, pp. 102- 107 ,(2005) , 10.1109/GRC.2005.1547244
J. D. Monk, On the Foundations of Set Theory American Mathematical Monthly. ,vol. 77, pp. 703- 711 ,(1970) , 10.1080/00029890.1970.11992564