An Autonomic Performance Environment for Exascale

作者:

DOI: 10.14529/JSFI150305

关键词:

摘要: Exascale systems will require new approaches to performance observation, analysis, and runtime decision-making optimize for efficiency. The standard "first-person" model, in which multiple operating system processes threads observe themselves record first-person profiles or traces offline is not adequate capture interactions at shared resources highly concurrent, dynamic systems. Further, it does support mechanisms adaptation. Our approach, called APEX Autonomic Performance Environment eXascale, provides sharing information among the layers of software stack, including hardware, systems, application code, both legacy. measurement components share across layers, merging data sets with collected by third-person tools observing hardware states node global-levels. Critically, a policy engine designed guide adaptation make algorithmic changes, re-allocate resources, change scheduling rules when appropriate conditions occur.

参考文章(33)
Jes us Labarta, Toni Cortes, Vincent Pillet, Sergi Girona, Jesus Labarta, PARAVER: A Tool to Visualize and Analyze Parallel Code ,(2007)
Yury Oleynik, Robert Mijaković, Isaías A. Comprés Ureña, Michael Firbach, Michael Gerndt, Recent Advances in Periscope for Performance Analysis and Tuning Parallel Tools Workshop. pp. 39- 51 ,(2014) , 10.1007/978-3-319-08144-1_4
SLOWER: A performance model for Exascale computing Supercomputing Frontiers and Innovations: an International Journal archive. ,vol. 1, pp. 42- 57 ,(2014) , 10.14529/JSFI140203
Renato Miceli, Gilles Civario, Anna Sikora, Eduardo César, Michael Gerndt, Houssam Haitof, Carmen Navarrete, Siegfried Benkner, Martin Sandrieser, Laurent Morin, François Bodin, AutoTune: a plugin-driven approach to the automatic tuning of parallel applications parallel computing. pp. 328- 342 ,(2012) , 10.1007/978-3-642-36803-5_24
Kevin A. Huck, Allen D. Malony, Sameer Shende, Alan Morris, TAUg: Runtime Global Performance Data Access Using MPI Recent Advances in Parallel Virtual Machine and Message Passing Interface. pp. 313- 321 ,(2006) , 10.1007/11846802_44
Shajulin Benedict, Ventsislav Petkov, Michael Gerndt, PERISCOPE: An Online-Based Distributed Performance Analysis Tool Parallel Tools Workshop. pp. 1- 16 ,(2010) , 10.1007/978-3-642-11261-4_1
Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger Mickler, Matthias S. Müller, Wolfgang E. Nagel, The Vampir Performance Analysis Tool-Set Parallel Tools Workshop. pp. 139- 155 ,(2008) , 10.1007/978-3-540-68564-7_9
Laxmikant V. Kale, Gengbin Zheng, Charm++ and AMPI: Adaptive Runtime Strategies via Migratable Objects Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications. pp. 265- 282 ,(2009) , 10.1002/9780470558027.CH13
Maciej Brodowicz, Thomas L. Sterling, Hartmut Kaiser, Matthew Anderson, An Application Driven Analysis of the ParalleX Execution Model arXiv: Distributed, Parallel, and Cluster Computing. ,(2011)