Deep learning based ensemble approach for probabilistic wind power forecasting

作者: Huai-zhi Wang , Gang-qiang Li , Gui-bin Wang , Jian-chun Peng , Hui Jiang

DOI: 10.1016/J.APENERGY.2016.11.111

关键词:

摘要: … wind power forecasting. In this approach, an advanced point forecasting method is originally … Wavelet transform is used to decompose the raw wind power data into different frequencies. …

参考文章(43)
Ashraf Ul Haque, M. Hashem Nehrir, Paras Mandal, A Hybrid Intelligent Model for Deterministic and Quantile Regression Approach for Probabilistic Wind Power Forecasting IEEE Transactions on Power Systems. ,vol. 29, pp. 1663- 1672 ,(2014) , 10.1109/TPWRS.2014.2299801
Kasra Mohammadi, Shahaboddin Shamshirband, Por Lip Yee, Dalibor Petković, Mazdak Zamani, Sudheer Ch, Predicting the wind power density based upon extreme learning machine Energy. ,vol. 86, pp. 232- 239 ,(2015) , 10.1016/J.ENERGY.2015.03.111
Bengt Muthén, Moments of the censored and truncated bivariate normal distribution British Journal of Mathematical and Statistical Psychology. ,vol. 43, pp. 131- 143 ,(1990) , 10.1111/J.2044-8317.1990.TB00930.X
Akin Tascikaraoglu, Borhan M. Sanandaji, Kameshwar Poolla, Pravin Varaiya, Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform Applied Energy. ,vol. 165, pp. 735- 747 ,(2016) , 10.1016/J.APENERGY.2015.12.082
Juan Yan, Kang Li, Erwei Bai, Zhile Yang, Aoife Foley, Time series wind power forecasting based on variant Gaussian Process and TLBO Neurocomputing. ,vol. 189, pp. 135- 144 ,(2016) , 10.1016/J.NEUCOM.2015.12.081
Pieter de Jong, Asher Kiperstok, Antonio Santos Sánchez, Roger Dargaville, Ednildo Andrade Torres, Integrating large scale wind power into the electricity grid in the Northeast of Brazil Energy. ,vol. 100, pp. 401- 415 ,(2016) , 10.1016/J.ENERGY.2015.12.026
Yudong Liang, Jinjun Wang, Sanping Zhou, Yihong Gong, Nanning Zheng, Incorporating image priors with deep convolutional neural networks for image super-resolution Neurocomputing. ,vol. 194, pp. 340- 347 ,(2016) , 10.1016/J.NEUCOM.2016.02.046