Electro-morphological, structural, thermal and ionic conduction properties of Gd/Pr co-doped ceria electrolytes exhibiting mixed Pr3+/Pr4+ cations

作者: L. Spiridigliozzi , G. Dell'Agli , G. Accardo , S.P. Yoon , D. Frattini

DOI: 10.1016/J.CERAMINT.2018.11.144

关键词:

摘要: Abstract Gd0.2-xPrxCe0.8O1.90, (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) has been synthesized by means of a simple co-precipitation route based on ammonium carbonate as the precipitating agent. The as-synthesized precursors are cerium-gadolinium-praseodymium amorphous hydroxycarbonates, which nanometric in size with highly homogeneous morphology, leading to reactive doped and co-doped nanocrystalline (≈13 nm) ceria after mild thermal treatment (2 h at 600 °C). obtained results highlight very positive effect Pr powders’ sintering behaviour, favour better densification final pellets, thus improving both their microstructure (with relative densities 97–99% 1250 °C for 3 h) electrochemical properties (up 1.25·10–1 S cm−1 800 °C sample 6Pr) compared state-of-art ceria-based electrolytes. Through comprehensive characterization, relation was formed between content microstructural features sintered pellets electrical behaviour. amount doping investigated over wide range 6 mol% established be optimal (possessing lowest electronic conductivity contribution). Definitely, these indicate that Gd0.2-xPrxCe0.8O1.90 an excellent set characteristics, electrical, convenient fabrication process, making it perfectly suitable IT-SOFC practical applications.

参考文章(42)
S. Ramesh, K.C. James Raju, Preparation and characterization of Ce1−x(Gd0.5Pr0.5)xO2 electrolyte for IT-SOFCs International Journal of Hydrogen Energy. ,vol. 37, pp. 10311- 10317 ,(2012) , 10.1016/J.IJHYDENE.2012.04.008
S Lübke, Electronic conductivity of Gd-doped ceria with additional Pr-doping Solid State Ionics. ,vol. 117, pp. 229- 243 ,(1999) , 10.1016/S0167-2738(98)00408-1
Arnab Choudhury, H. Chandra, A. Arora, Application of solid oxide fuel cell technology for power generation—A review Renewable & Sustainable Energy Reviews. ,vol. 20, pp. 430- 442 ,(2013) , 10.1016/J.RSER.2012.11.031
Christian Kjølseth, Harald Fjeld, Øystein Prytz, Paul Inge Dahl, Claude Estournès, Reidar Haugsrud, Truls Norby, Space–charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3 − δ Solid State Ionics. ,vol. 181, pp. 268- 275 ,(2010) , 10.1016/J.SSI.2010.01.014
Ce Wen Nan, Xisong Zhou, Jun Nan, Junbo Wu, Grain-boundary-controlled impedances of electroceramics: Generalized effective-medium approach and brick-layer model Journal of Applied Physics. ,vol. 89, pp. 3955- 3959 ,(2001) , 10.1063/1.1353554
Vladislav V Kharton, A.P Viskup, F.M Figueiredo, E.N Naumovich, A.L Shaulo, F.M.B Marques, Electrochemical properties of Pr-doped Ce(Gd) O2-δ Materials Letters. ,vol. 53, pp. 160- 164 ,(2002) , 10.1016/S0167-577X(01)00469-4
Gianfranco Dell'Agli, Giuseppe Mascolo, Maria Cristina Mascolo, Concetta Pagliuca, Weakly-agglomerated nanocrystalline (ZrO2)0.9(Yb2O3)0.1 powders hydrothermally synthesized at low temperature Solid State Sciences. ,vol. 8, pp. 1046- 1050 ,(2006) , 10.1016/J.SOLIDSTATESCIENCES.2006.03.009
V.V. Kharton, A.P. Viskup, F.M. Figueiredo, E.N. Naumovich, A.A. Yaremchenko, F.M.B. Marques, Electron–hole conduction in Pr-doped Ce(Gd)O2−δ by faradaic efficiency and emf measurements Electrochimica Acta. ,vol. 46, pp. 2879- 2889 ,(2001) , 10.1016/S0013-4686(01)00505-9
William J. Bowman, Jiangtao Zhu, Renu Sharma, Peter A. Crozier, Electrical conductivity and grain boundary composition of Gd-doped and Gd/Pr co-doped ceria Solid State Ionics. ,vol. 272, pp. 9- 17 ,(2015) , 10.1016/J.SSI.2014.12.006
Ji-Guang Li, Takayasu Ikegami, Yarong Wang, Toshiyuki Mori, Reactive Ceria Nanopowders via Carbonate Precipitation Journal of the American Ceramic Society. ,vol. 85, pp. 2376- 2378 ,(2002) , 10.1111/J.1151-2916.2002.TB00465.X