On the Masur paradox

作者: G. I. N. Rozvany , M. Rotthaus , F. Spengemann , W. Gollub , M. Zhou

DOI: 10.1080/08905459008915672

关键词:

摘要: It was shown by Barnett, Shield, and Prager in the sixties that optimal elastic beam design for a deflection constraint, continuously variable stiffness is proportional to square root of product real virtual moments. In case constraint at single point, moments equilibrate unit load point. As Masur pointed out early seventies, above optimality condition implies must everywhere have same sign. Tn view fact corresponding adjoint displacement fields be kinematically admissible, justifiably concluded solution satisfying all requirements may not exist some problems. An explanation this apparent paradox, involving an unusual type singularity solution, given paper. also mathematical programming (MP) methods do yield close approximation exact class problems considered, while iterative criteria (OC) fully confirm findings.

参考文章(14)
E. F. Masur, Optimality in the Presence of Discreteness and Discontinuity Springer, Berlin, Heidelberg. pp. 441- 453 ,(1975) , 10.1007/978-3-642-80895-1_31
L. Berke, N. S. Khot, Structural optimization using optimality criteria The NATO Advanced Study Institute on Computer Aided Optimal Design: structural and mechanical systems on Computer aided optimal design: structural and mechanical systems. pp. 271- 311 ,(1987) , 10.1007/978-3-642-83051-8_7
George I. N. Rozvany, Structural Design via Optimality Criteria Springer Netherlands. ,(1989) , 10.1007/978-94-009-1161-1
George I.N. Rozvany, Elastic Versus Plastic Optimal Strength Design Journal of Engineering Mechanics-asce. ,vol. 103, pp. 210- 215 ,(1977) , 10.1061/JMCEA3.0002206
Raphael T. Haftka, Manohar P. Kamat, Zafer Gürdal, Elements of Structural Optimization ,(1984)
William Prager, Optimal design of statically determinate beams for given deflection International Journal of Mechanical Sciences. ,vol. 13, pp. 893- 895 ,(1971) , 10.1016/0020-7403(71)90115-9
E. J. Haug, P. G. Kirmser, Minimum Weight Design of Beams With Inequality Constraints on Stress and Deflection Journal of Applied Mechanics. ,vol. 34, pp. 999- 1004 ,(1967) , 10.1115/1.3607869
Richard T. Shield, William Prager, Optimal structural design for given deflection Zeitschrift für Angewandte Mathematik und Physik. ,vol. 21, pp. 513- 523 ,(1970) , 10.1007/BF01587681
William Prager, R. T. Shield, A General Theory of Optimal Plastic Design Journal of Applied Mechanics. ,vol. 34, pp. 184- 186 ,(1967) , 10.1115/1.3607621