Two classes of conformable fractional Sturm‐Liouville problems: Theory and applications

作者: Hamid Mortazaasl , Ali Asghar Jodayree Akbarfam

DOI: 10.1002/MMA.6719

关键词:

摘要:

参考文章(76)
Won Sang Chung, Fractional Newton mechanics with conformable fractional derivative Journal of Computational and Applied Mathematics. ,vol. 290, pp. 150- 158 ,(2015) , 10.1016/J.CAM.2015.04.049
Douglas R. Anderson, Darin J. Ulness, Properties of the Katugampola fractional derivative with potential application in quantum mechanics Journal of Mathematical Physics. ,vol. 56, pp. 063502- ,(2015) , 10.1063/1.4922018
P. R. Sethna, On averaged and normal form equations Nonlinear Dynamics. ,vol. 7, pp. 1- 10 ,(1995) , 10.1007/BF00045122
M. Klimek, O.P. Agrawal, Fractional Sturm-Liouville problem Computers & Mathematics With Applications. ,vol. 66, pp. 795- 812 ,(2013) , 10.1016/J.CAMWA.2012.12.011
Manuel D. Ortigueira, J.A. Tenreiro Machado, What is a fractional derivative Journal of Computational Physics. ,vol. 293, pp. 4- 13 ,(2015) , 10.1016/J.JCP.2014.07.019
Roshdi Khalil, Mohammed Al Horani, Abdelrahman Yousef, Mohammad Sababheh, None, A new definition of fractional derivative Journal of Computational and Applied Mathematics. ,vol. 264, pp. 65- 70 ,(2014) , 10.1016/J.CAM.2014.01.002
Thabet Abdeljawad, On conformable fractional calculus Journal of Computational and Applied Mathematics. ,vol. 279, pp. 57- 66 ,(2015) , 10.1016/J.CAM.2014.10.016
J. Weberszpil, J.A. Helayël-Neto, Variational approach and deformed derivatives Physica A-statistical Mechanics and Its Applications. ,vol. 450, pp. 217- 227 ,(2016) , 10.1016/J.PHYSA.2015.12.145
Ali Kurt, Yücel Çenesiz, Orkun Tasbozan, On the Solution of Burgers’ Equation with the New Fractional Derivative Open Physics. ,vol. 13, pp. 45- ,(2015) , 10.1515/PHYS-2015-0045
Mostafa Eslami, Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations Applied Mathematics and Computation. ,vol. 285, pp. 141- 148 ,(2016) , 10.1016/J.AMC.2016.03.032