Advances in mathematical sciences and applications

作者: 豊彦 愛木 , 信幸 剣持

DOI:

关键词:

摘要: 5 天前 - Published year: v. 19 no. 1: April 30 2009, vol. 19 no. 2: October 31 2009, vol. 20 no. 1: May 31 2010, vol. 20 no. 2: Febrary 15 2011, vol. 21 no. 1: September 1 2011, vol. 21 no…

参考文章(84)
Evgeniy Khain, Leonard M. Sander, Generalized Cahn-Hilliard equation for biological applications. Physical Review E. ,vol. 77, pp. 051129- 051129 ,(2008) , 10.1103/PHYSREVE.77.051129
H. Almasieh, M. Roodaki, K. Maleknejad, Triangular functions (TF) method for the solution of nonlinear Volterra–Fredholm integral equations Communications in Nonlinear Science and Numerical Simulation. ,vol. 15, pp. 3293- 3298 ,(2010) , 10.1016/J.CNSNS.2009.12.015
Luciano Modica, The gradient theory of phase transitions and the minimal interface criterion Archive for Rational Mechanics and Analysis. ,vol. 98, pp. 123- 142 ,(1987) , 10.1007/BF00251230
E. Babolian, A. Shahsavaran, Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets Journal of Computational and Applied Mathematics. ,vol. 225, pp. 87- 95 ,(2009) , 10.1016/J.CAM.2008.07.003
M.H. Reihani, Z. Abadi, Rationalized Haar functions method for solving Fredholm and Volterra integral equations Journal of Computational and Applied Mathematics. ,vol. 200, pp. 12- 20 ,(2007) , 10.1016/J.CAM.2005.12.026
Amjad Alipanah, Mehdi Dehghan, NUMERICAL SOLUTION OF THE NONLINEAR FREDHOLM INTEGRAL EQUATIONS BY POSITIVE DEFINITE FUNCTIONS Applied Mathematics and Computation. ,vol. 190, pp. 1754- 1761 ,(2007) , 10.1016/J.AMC.2007.02.063
J.A. Ezquerro, M.A. Hernández, Fourth-order iterations for solving Hammerstein integral equations Applied Numerical Mathematics. ,vol. 59, pp. 1149- 1158 ,(2009) , 10.1016/J.APNUM.2008.05.005
Everaldo Medeiros, Kanishka Perera, Multiplicity of solutions for a quasilinear elliptic problem via the cohomological index Nonlinear Analysis-theory Methods & Applications. ,vol. 71, pp. 3654- 3660 ,(2009) , 10.1016/J.NA.2009.02.013
Charles M. Elliott, Harald Garcke, On the Cahn–Hilliard Equation with Degenerate Mobility SIAM Journal on Mathematical Analysis. ,vol. 27, pp. 404- 423 ,(1996) , 10.1137/S0036141094267662