On the Existence of Integrable Solutions to Nonlinear Elliptic Systems and Variational Problems with Linear Growth

作者: Lisa Beck , Miroslav Bulíček , Josef Málek , Endre Süli

DOI: 10.1007/S00205-017-1113-4

关键词:

摘要: We investigate the properties of certain elliptic systems leading, a~priori, to solutions that belong space Radon measures. show if problem is equipped with a so-called asymptotic Uhlenbeck structure, then solution can in fact be understood as standard weak solution, one proviso: analogously case minimal surface equations, attainment boundary value penalized by measure supported on (a subset of) boundary, which, for class problems under consideration here, part where Neumann condition imposed.

参考文章(20)
K. R. Rajagopal, On Implicit Constitutive Theories Applications of Mathematics. ,vol. 48, pp. 279- 319 ,(2003) , 10.1023/A:1026062615145
Diego Pallara, Luigi Ambrosio, Nicola Fusco, Functions of Bounded Variation and Free Discontinuity Problems ,(2000)
Gabriele Anzellotti, On the extremal stress and displacement in Hencky plasticity Duke Mathematical Journal. ,vol. 51, pp. 133- 147 ,(1984) , 10.1215/S0012-7094-84-05107-X
Michael Bildhauer, Martin Fuchs, Convex Variational Problems with Linear Growth Springer Berlin Heidelberg. pp. 327- 344 ,(2003) , 10.1007/978-3-642-55627-2_18
Ivar Ekeland, Roger Téman, Convex analysis and variational problems ,(1976)
Robert Finn, Remarks relevant to minimal surfaces, and to surfaces of prescribed mean curvature Journal D Analyse Mathematique. ,vol. 14, pp. 139- 160 ,(1965) , 10.1007/BF02806384
Miroslav Bulíček, Josef Málek, K. Rajagopal, Endre Süli, On elastic solids with limiting small strain: modelling and analysis EMS Surveys in Mathematical Sciences. ,vol. 1, pp. 283- 332 ,(2014) , 10.4171/EMSS/7
J. M. Ball, F. Murat, Remarks on Chacon’s biting lemma Proceedings of the American Mathematical Society. ,vol. 107, pp. 655- 663 ,(1989) , 10.1090/S0002-9939-1989-0984807-3
Avner Friedman, Jindrich Necas, Systems of nonlinear wave equations with nonlinear viscosity. Pacific Journal of Mathematics. ,vol. 135, pp. 29- 55 ,(1988) , 10.2140/PJM.1988.135.29