作者: Kusum Deep , Madhuri
DOI: 10.1007/978-81-322-1041-2_20
关键词:
摘要: The Lennard-Jones (L-J) Potential Problem is a challenging global optimization problem, due to the presence of large number local optima that increases exponentially with problem size. ‘NP-hard’, i.e., it not possible design an algorithm which can solve on time scale growing linearly For this complexity, lot research has been done, algorithms it. In paper, attempt made by incorporating recently designed multi-orbit (MO) dynamic neighborhood topology in Particle Swarm Optimization (PSO) one most popular natural computing paradigms. MO inspired from cohesive interconnection network molecules drop liquid. topology, swarm heterogeneous connectivity some subsets strongly connected while others relatively isolated. This heterogeneity connections balances exploration–exploitation trade-off swarm. Further, uses neighborhoods, order avoid entrapment optima. Simulations are performed new PSO 14 instances L-J Problem, and results compared those obtained commonly used ring conjunction two adaptive inertia weight variants PSO, namely Globally Locally PSO. indicate be solved more efficiently, use than