Hard Ball Systems and Semi-Dispersive Billiards: Hyperbolicity and Ergodicity

作者: N. Simányi

DOI: 10.1007/978-3-662-04062-1_4

关键词:

摘要: The purpose of this survey article is two-fold: First, we intend to introduce the reader into world several types semi-dispersive billiards, such as Sinai’s hard sphere systems in tori or rectangular boxes, Lorentz-gas, stadia (including Bunimovich’s celebrated one), and Wojtkowski’s 1-D falling balls. second part deals with some crucial technical aspects proving full hyperbolicity (nonzero Lyapunov exponents almost everywhere) ergodicity for models statistical mechanics.

参考文章(56)
Nandor Simanyi, None, The K-property of N billiard balls II. Computation of neutral linear spaces Inventiones Mathematicae. ,vol. 110, pp. 151- 172 ,(1992) , 10.1007/BF01231329
D. Szász, Boltzmann’s Ergodic Hypothesis, a Conjecture for Centuries? Springer, Berlin, Heidelberg. pp. 421- 446 ,(2000) , 10.1007/978-3-662-04062-1_14
Anatole Katok, Jean-Marie Strelcyn, Feliks Przytycki, François Ledrappier, Invariant Manifolds, Entropy and Billiards: Smooth Maps With Singularities ,(1986)
Carlangelo Liverani, Maciej P. Wojtkowski, Ergodicity in Hamiltonian Systems arXiv: Dynamical Systems. pp. 130- 202 ,(1995) , 10.1007/978-3-642-61215-2_3
Nandor Simanyi, Towards a proof of recurrence for the Lorentz process Banach Center Publications. ,vol. 23, pp. 265- 276 ,(1989) , 10.4064/-23-1-265-276
Nándor Simányi, The K-property of N billiard balls I Inventiones Mathematicae. ,vol. 108, pp. 521- 548 ,(1992) , 10.1007/BF02100616
Leonid Bunimovich, Carlangelo Liverani, Alessandro Pellegrinotti, Yurii Suhov, Ergodic systems of n balls in a billiard table Communications in Mathematical Physics. ,vol. 146, pp. 357- 396 ,(1992) , 10.1007/BF02102633
NÁNDOR SIMÁNYI, DOMOKOS SZÁSZ, Non-integrability of cylindric billiards and transitive Lie group actions Ergodic Theory and Dynamical Systems. ,vol. 20, pp. 593- 610 ,(2000) , 10.1017/S0143385700000304
Nandor Simanyi, Domokos Szasz, Hard ball systems are completely hyperbolic Annals of Mathematics. ,vol. 149, pp. 35- 96 ,(1999) , 10.2307/121019
A. Krámli, N. Simányi, D. Szász, The $K$-property of four billiard balls Communications in Mathematical Physics. ,vol. 144, pp. 107- 148 ,(1992) , 10.1007/BF02099193