Lattice Thermal Conductivity

作者: Julius Ranninger

DOI: 10.1103/PHYSREV.140.A2031

关键词:

摘要: The lattice thermal conductivity for monatomic crystals is discussed high temperatures, above and around the Debye temperature. While this problem cannot be treated in a suitable way by conventional methods calculating transport coefficients, it represents an excellent example of use correlation-function techniques. By splitting total anharmonic interatomic potential into its diagonal nondiagonal contributions, $V={V}_{\mathrm{d}}+{V}_{\mathrm{nd}}$, effect equilibrium nonequilibrium properties crystal on can studied separately. current-current correlation function calculated to second order $V$ single-phonon-lifetime approximation. ${V}_{\mathrm{nd}}$ only contributes approximation space-time-dependent part function, ${V}_{\mathrm{d}}$ as well space-time-independent part. latter contribution ${{V}_{\mathrm{d}}}^{0}$ temperature-dependent Hartree determines lattice. At constant pressure gives rise expansion system, which causes decrease frequency with increasing temperature, resulting depression below $\frac{1}{T}$ behavior. Even case volume, temperature dependence phonon This again behavior leads ${T}^{2}$ term resistivity region taking account entire anharmonicity lowest atomic displacements. Thus Peierls' expression rederived terms renormalized group velocity due ${{V}_{\mathrm{d}}}^{0}$, rather than pure harmonic potential. dissipative mechanism given $V$, cancels partially conductivity. For temperatures just $\frac{1}{T}(1+\ensuremath{\alpha}T)$. With reaches minimum, followed steep one approaches dynamical instability system.

参考文章(14)
R. Peierls, Zur kinetischen Theorie der Wärmeleitung in Kristallen Annalen der Physik. ,vol. 395, pp. 1055- 1101 ,(1929) , 10.1002/ANDP.19293950803
Joseph Callaway, Model for Lattice Thermal Conductivity at Low Temperatures Physical Review. ,vol. 113, pp. 1046- 1051 ,(1959) , 10.1103/PHYSREV.113.1046
J A Krumhansl, Thermal conductivity of insulating crystals in the presence of normal processes Proceedings of the Physical Society. ,vol. 85, pp. 921- 930 ,(1965) , 10.1088/0370-1328/85/5/310
Peter Carruthers, Theory of Thermal Conductivity of Solids at Low Temperatures Reviews of Modern Physics. ,vol. 33, pp. 92- 138 ,(1961) , 10.1103/REVMODPHYS.33.92
Takeo Matsubara, A New Approach to Quantum-Statistical Mechanics Progress of Theoretical Physics. ,vol. 14, pp. 351- 378 ,(1955) , 10.1143/PTP.14.351
Paul C. Martin, Julian Schwinger, Theory of Many-Particle Systems. I Physical Review. ,vol. 115, pp. 1342- 1373 ,(1959) , 10.1103/PHYSREV.115.1342
R. Kubo, a General Expression for the Conductivity Tensor Canadian Journal of Physics. ,vol. 34, pp. 1274- 1277 ,(1956) , 10.1139/P56-140
J. M. Luttinger, Theory of Thermal Transport Coefficients Physical Review. ,vol. 135, pp. 1505- 1514 ,(1964) , 10.1103/PHYSREV.135.A1505
Robert J. Hardy, Energy-Flux Operator for a Lattice Physical Review. ,vol. 132, pp. 168- 177 ,(1963) , 10.1103/PHYSREV.132.168
Leo P. Kadanoff, Paul C. Martin, Theory of Many-Particle Systems. II. Superconductivity Physical Review. ,vol. 124, pp. 670- 697 ,(1961) , 10.1103/PHYSREV.124.670