Solvability based on E-property for the nonlinear symmetric cone complementarity problem

作者: Yuan-Min Li , Deyun Wei

DOI: 10.1016/J.AMC.2014.03.049

关键词:

摘要: Abstract In this paper, we introduce some concepts of E-properties for nonlinear transformations defined on Euclidean Jordan algebras, such as E-property, quad uniform E 0 -property. And then study the implications among these E-properties. particular, E-property is equivalent to E-property. The K -copositive property implies proved have and R -properties. Based E-properties, get sufficient conditions guarantee solution existence symmetric cone complementarity problem.

参考文章(29)
Jacques Faraut, Adam Korányi, Analysis on Symmetric Cones ,(1995)
M. Seetharama Gowda, Jiyuan Tao, Z-transformations on proper and symmetric cones: Z-transformations Mathematical Programming. ,vol. 117, pp. 195- 221 ,(2008) , 10.1007/S10107-007-0159-8
Jiyuan Tao, On the completely-Q property for linear transformations on Euclidean Jordan algebras Linear Algebra and its Applications. ,vol. 438, pp. 2054- 2071 ,(2013) , 10.1016/J.LAA.2012.09.033
Zheng-Hai Huang, Tie Ni, Smoothing algorithms for complementarity problems over symmetric cones Computational Optimization and Applications. ,vol. 45, pp. 557- 579 ,(2010) , 10.1007/S10589-008-9180-Y
I. Jeyaraman, V. Vetrivel, Jordan quadratic SSM-property and its relation to copositive linear transformations on Euclidean Jordan algebras Linear Algebra and its Applications. ,vol. 433, pp. 390- 400 ,(2010) , 10.1016/J.LAA.2010.03.005
F. Alizadeh, D. Goldfarb, Second-order cone programming Mathematical Programming. ,vol. 95, pp. 3- 51 ,(2003) , 10.1007/S10107-002-0339-5
Yuan Min Li, Xing Tao Wang, De Yun Wei, Improved smoothing Newton methods for symmetric cone complementarity problems Optimization Letters. ,vol. 6, pp. 471- 487 ,(2012) , 10.1007/S11590-010-0274-Y