Thermoelectric Potential of Polymer-Scaffolded Ionic Liquid Membranes

作者: R. S. Datta , S. M. Said , S. R. Sahamir , M. R. Karim , M. F. M. Sabri

DOI: 10.1007/S11664-013-2799-1

关键词:

摘要: Organic thin films have been viewed as potential thermoelectric (TE) materials, given their ease of fabrication, flexibility, cost effectiveness, and low thermal conductivity. However, intrinsically electrical conductivity is a main drawback which results in relatively lower TE figure merit for polymer-based materials than inorganic materials. In this paper, technique to enhance the ion transport properties polymers through introduction ionic liquids presented. The polymer form nanofiber scaffold produced using electrospinning technique. These fibers were then soaked different based on substituted imidazolium such 1-ethyl-3-methylimidazolium chloride or 1-butyl-3-methylimidazolium bromide. This method was applied electrospun polyacrylonitrile mixture polyvinyl alcohol chitosan polymers. membranes observed increase with increasing concentration liquid, maximum 1.20 × 10−1 S/cm measured at room temperature. Interestingly, value surpassed pure liquids. indicate that it possible significantly improve membrane simple cost-effective method. may turn boost figures are well known be considerably those Results terms Seebeck coefficient also presented paper provide an overall representation polymer-scaffolded liquid membranes.

参考文章(22)
Hu Yan, Norina Sada, Naoki Toshima, Thermal transporting properties of electrically conductive polyaniline films as organic thermoelectric materials Journal of Thermal Analysis and Calorimetry. ,vol. 69, pp. 881- 887 ,(2002) , 10.1023/A:1020612123826
Réda Badrou Aïch, Nicolas Blouin, Angélique Bouchard, Mario Leclerc, Electrical and Thermoelectric Properties of Poly(2,7-Carbazole) Derivatives Chemistry of Materials. ,vol. 21, pp. 751- 757 ,(2009) , 10.1021/CM8031175
S. Chandra, S. S. Sekhon, Narinder Arora, PMMA based protonic polymer gel electrolytes Ionics. ,vol. 6, pp. 112- 118 ,(2000) , 10.1007/BF02375554
J.-E. Österholm, P. Passiniemi, H. Isotalo, H. Stubb, Synthesis and properties of FeCl4-doped polythiophene Synthetic Metals. ,vol. 18, pp. 213- 218 ,(1987) , 10.1016/0379-6779(87)90881-2
R. Zuzok, A. B. Kaiser, W. Pukacki, S. Roth, Thermoelectric power and conductivity of iodine‐doped ‘‘new’’ polyacetylene Journal of Chemical Physics. ,vol. 95, pp. 1270- 1275 ,(1991) , 10.1063/1.461107
G-H. Kim, L. Shao, K. Zhang, K. P. Pipe, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency Nature Materials. ,vol. 12, pp. 719- 723 ,(2013) , 10.1038/NMAT3635
H Linke, T E Humphrey, M F O’Dwyer, Concept study for a high-efficiency nanowire based thermoelectric Nanotechnology. ,vol. 17, ,(2006) , 10.1088/0957-4484/17/11/S18
N. Mateeva, H. Niculescu, J. Schlenoff, L. R. Testardi, Correlation of Seebeck coefficient and electric conductivity in polyaniline and polypyrrole Journal of Applied Physics. ,vol. 83, pp. 3111- 3117 ,(1998) , 10.1063/1.367119
N. T. Kemp, A. B. Kaiser, C.-J. Liu, B. Chapman, O. Mercier, A. M. Carr, H. J. Trodahl, R. G. Buckley, A. C. Partridge, J. Y. Lee, C. Y. Kim, A. Bartl, L. Dunsch, W. T. Smith, J. S. Shapiro, Thermoelectric power and conductivity of different types of polypyrrole Journal of Polymer Science Part B: Polymer Physics. ,vol. 37, pp. 953- 960 ,(1999) , 10.1002/(SICI)1099-0488(19990501)37:9<953::AID-POLB7>3.0.CO;2-L