Analytic expression for Taylor–Couette stability boundary

作者: Siegfried Grossmann , Alexander Esser

DOI: 10.1063/1.868963

关键词:

摘要: We analyze the mechanism that determines boundary of stability in Taylor–Couette flow. By simple physical argument we derive an analytic expression to approximate line for all radius ratios and speed ratios, co‐ counterrotating cylinders. The includes viscosity so generalizes Rayleigh’s criterion. achieve agreement with linear theory experiments whole parameter space. Explicit formulae are given limiting cases.

参考文章(18)
On the Dynamics of Revolving Fluids Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 93, pp. 148- 154 ,(1917) , 10.1098/RSPA.1917.0010
T. M. Malanyuk, Finite-gap solutions of the Davey-Stewartson equations Journal of Nonlinear Science. ,vol. 4, pp. 1- 21 ,(1994) , 10.1007/BF02430624
H. A. Snyder, Stability of Rotating Couette Flow. I. Asymmetric Waveforms Physics of Fluids. ,vol. 11, pp. 728- 734 ,(1968) , 10.1063/1.1691991
H. A. Snyder, Stability of Rotating Couette Flow. II. Comparison with Numerical Results Physics of Fluids. ,vol. 11, pp. 1599- 1605 ,(1968) , 10.1063/1.1692167
Bruno Eckhardt, Demin Yao, Local stability analysis along Lagrangian paths Chaos Solitons & Fractals. ,vol. 5, pp. 2073- 2088 ,(1995) , 10.1016/0960-0779(95)00016-W
Donald Earl Coles, A Note on Taylor Instability in Circular Couette Flow Journal of Applied Mechanics. ,vol. 34, pp. 529- 534 ,(1967) , 10.1115/1.3607738
Daniel D. Joseph, R. C. DiPrima, Stability of fluid motions ,(1976)
Stability of a Viscous Liquid Contained between Two Rotating Cylinders Philosophical Transactions of the Royal Society A. ,vol. 223, pp. 289- 343 ,(1923) , 10.1098/RSTA.1923.0008
Experiments on the Stability of Viscous Flow Between Rotating Cylinders. II. Visual Observations Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 258, pp. 101- 123 ,(1960) , 10.1098/RSPA.1960.0177
Determination of the Viscosity of Water Proceedings of The Royal Society of London. ,vol. 45, pp. 126- 132 ,(1888) , 10.1098/RSPL.1888.0081