Hallucinating Very Low-Resolution Unaligned and Noisy Face Images by Transformative Discriminative Autoencoders

作者: Xin Yu , Fatih Porikli , None

DOI: 10.1109/CVPR.2017.570

关键词:

摘要: Most of the conventional face hallucination methods assume input image is sufficiently large and aligned, all require to be noise-free. Their performance degrades drastically if tiny, unaligned, contaminated by noise. In this paper, we introduce a novel transformative discriminative autoencoder 8X super-resolve unaligned noisy tiny (16X16) low-resolution images. contrast encoder-decoder based autoencoders, our method uses decoder-encoder-decoder networks. We first employ decoder network upsample denoise simultaneously. Then use encoder project intermediate HR faces aligned noise-free LR faces. Finally, second generate hallucinated Our extensive evaluations on very dataset show that achieves superior results outperforms state-of-the-art margin 1.82dB PSNR.

参考文章(29)
Koray Kavukcuoglu, Max Jaderberg, Karen Simonyan, Andrew Zisserman, Spatial transformer networks neural information processing systems. ,vol. 28, pp. 2017- 2025 ,(2015)
Arthur Szlam, Emily Denton, Rob Fergus, Soumith Chintala, Deep generative image models using a Laplacian pyramid of adversarial networks neural information processing systems. ,vol. 28, pp. 1486- 1494 ,(2015)
David Warde-Farley, Yoshua Bengio, Ian J. Goodfellow, Sherjil Ozair, Aaron Courville, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, Generative Adversarial Networks arXiv: Machine Learning. ,(2014)
Ziwei Liu, Ping Luo, Xiaogang Wang, Xiaoou Tang, Deep Learning Face Attributes in the Wild 2015 IEEE International Conference on Computer Vision (ICCV). pp. 3730- 3738 ,(2015) , 10.1109/ICCV.2015.425
Matthew D. Zeiler, Rob Fergus, Visualizing and Understanding Convolutional Networks european conference on computer vision. pp. 818- 833 ,(2014) , 10.1007/978-3-319-10590-1_53
Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Image Super-Resolution Using Deep Convolutional Networks IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 38, pp. 295- 307 ,(2016) , 10.1109/TPAMI.2015.2439281
Soheil Kolouri, Gustavo K. Rohde, Transport-based single frame super resolution of very low resolution face images computer vision and pattern recognition. pp. 4876- 4884 ,(2015) , 10.1109/CVPR.2015.7299121
Xiang Ma, Junping Zhang, Chun Qi, Hallucinating face by position-patch Pattern Recognition. ,vol. 43, pp. 2224- 2236 ,(2010) , 10.1016/J.PATCOG.2009.12.019
Nannan Wang, Dacheng Tao, Xinbo Gao, Xuelong Li, Jie Li, A Comprehensive Survey to Face Hallucination International Journal of Computer Vision. ,vol. 106, pp. 9- 30 ,(2014) , 10.1007/S11263-013-0645-9
Ce Liu, Heung-Yeung Shum, William T. Freeman, Face Hallucination: Theory and Practice International Journal of Computer Vision. ,vol. 75, pp. 115- 134 ,(2007) , 10.1007/S11263-006-0029-5