Effectiveness of implicit methods for stiff stochastic differential equations

作者: Tiejun Li , Assyr Abdulle , Weinan E.

DOI:

关键词:

摘要: In this paper we study the behavior of a family implicit numerical methods applied to stochastic differential equations with multiple time scales. We show by combination analytical arguments and examples that in general fail capture effective dynamics at slow scale. This is due fact such cannot correctly non-Dirac invariant distributions when step size much larger than relaxation system. AMS subject classifications: 65L20, 65C30, 37M25

参考文章(12)
E, Weinan, Bjorn Engquist, Xiantao Li, Weiqing Ren, Eric Vanden-Eijnden, Heterogeneous multiscale methods: A review Communications in Computational Physics. ,vol. 2, pp. 367- 450 ,(2007)
Eric Vanden-Eijnden, NUMERICAL TECHNIQUES FOR MULTI-SCALE DYNAMICAL SYSTEMS WITH STOCHASTIC EFFECTS ⁄ Communications in Mathematical Sciences. ,vol. 1, pp. 385- 391 ,(2003) , 10.4310/CMS.2003.V1.N2.A11
Peter E Kloeden, Eckhard Platen, Matthias Gelbrich, Werner Romisch, Numerical Solution of Stochastic Differential Equations ,(1992)
Bjorn Engquist, Yen-Hsi Tsai, Heterogeneous multiscale methods for stiff ordinary differential equations Mathematics of Computation. ,vol. 74, pp. 1707- 1742 ,(2005) , 10.1090/S0025-5718-05-01745-X
Desmond J. Higham, Mean-Square and Asymptotic Stability of the Stochastic Theta Method SIAM Journal on Numerical Analysis. ,vol. 38, pp. 753- 769 ,(2000) , 10.1137/S003614299834736X
Weinan E, Bjorn Engquist, The Heterognous Multiscale Methods Communications in Mathematical Sciences. ,vol. 1, pp. 87- 132 ,(2003) , 10.4310/CMS.2003.V1.N1.A8
Weinan E, Analysis of the heterogeneous multiscale method for ordinary differential equations Communications in Mathematical Sciences. ,vol. 1, pp. 423- 436 ,(2003) , 10.4310/CMS.2003.V1.N3.A3
Thomas G Kurtz, A limit theorem for perturbed operator semigroups with applications to random evolutions Journal of Functional Analysis. ,vol. 12, pp. 55- 67 ,(1973) , 10.1016/0022-1236(73)90089-X