A Wavelet Variance Primer

作者: Donald B. Percival , Debashis Mondal

DOI: 10.1016/B978-0-444-53858-1.00022-3

关键词:

摘要: Abstract The wavelet variance is a decomposition of the time series. Because its scale-based nature, offers insight into various series, particularly in physical sciences. This primer basic introduction to variance, starting with definition terms discrete transform, proceeding discussion large-sample statistical properties estimators, and then continuing an examination estimators appropriate for series either missing values or contamination by discordant values. moves two uses involving across-scale patterns, namely, estimation exponents power-law processes estimations characteristic scales. closes examples applied atomic clocks, sea-ice thickness, albedo Arctic ice, X-ray fluctuations from binary stars, coherent structures river flow.

参考文章(70)
D.W. Allan, Statistics of atomic frequency standards Proceedings of the IEEE. ,vol. 54, pp. 221- 230 ,(1966) , 10.1109/PROC.1966.4634
Ta-Hsin Li, Hee-Seok Oh, Wavelet spectrum and its characterization property for random processes IEEE Transactions on Information Theory. ,vol. 48, pp. 2922- 2937 ,(2002) , 10.1109/TIT.2002.804046
C. Chris Chickadel, Alexander R. Horner-Devine, Stefan A. Talke, Andrew T. Jessup, Vertical Boil Propagation from a Submerged Estuarine Sill Geophysical Research Letters. ,vol. 36, ,(2009) , 10.1029/2009GL037278
Donald B. Percival, Harold O. Mofjeld, Analysis of Subtidal Coastal Sea Level Fluctuations Using Wavelets Journal of the American Statistical Association. ,vol. 92, pp. 868- 880 ,(1997) , 10.1080/01621459.1997.10474042
S.G. Mallat, Multifrequency channel decompositions of images and wavelet models IEEE Transactions on Acoustics, Speech, and Signal Processing. ,vol. 37, pp. 2091- 2110 ,(1989) , 10.1109/29.45554
Vincent Pichot, Jean-Michel Gaspoz, Serge Molliex, Anestis Antoniadis, Thierry Busso, Frédéric Roche, Frédéric Costes, Luc Quintin, Jean-René Lacour, Jean-Claude Barthélémy, Wavelet transform to quantify heart rate variability and to assess its instantaneous changes. Journal of Applied Physiology. ,vol. 86, pp. 1081- 1091 ,(1999) , 10.1152/JAPPL.1999.86.3.1081
Eric M. Aldrich, Alternative Estimators of Wavelet Variance SSRN Electronic Journal. ,(2005) , 10.2139/SSRN.1515745
C. L. Mallows, Linear processes are nearly Gaussian Journal of Applied Probability. ,vol. 4, pp. 313- 329 ,(1967) , 10.1017/S0021900200032071
M. S. Bartlett, D. G. Kendall, The Statistical Analysis of Variance-Heterogeneity and the Logarithmic Transformation Supplement to the Journal of the Royal Statistical Society. ,vol. 8, pp. 128- 138 ,(1946) , 10.2307/2983618
Donald B. Percival, Michael J. Keim, Assessing Characteristic Scales Using Wavelets arXiv: Methodology. ,(2010)