Double-wave solutions and Lie symmetry analysis to the (2 + 1)-dimensional coupled Burgers equations

作者: M.S. Osman , D. Baleanu , A.R. Adem , K. Hosseini , M. Mirzazadeh

DOI: 10.1016/J.CJPH.2019.11.005

关键词:

摘要: … [17] exerted the Lie symmetry method to derive the exact … [18] employed the Lie symmetry method to obtain the exact solutions … 3, the Lie symmetry technique is adopted for the symmetry …

参考文章(25)
Zheng-Yi Ma, Xiao-Fei Wu, Jia-Min Zhu, Multisoliton excitations for the Kadomtsev–Petviashvili equation and the coupled Burgers equation Chaos, Solitons & Fractals. ,vol. 31, pp. 648- 657 ,(2007) , 10.1016/J.CHAOS.2005.10.012
K. Hosseini, R. Ansari, P. Gholamin, Exact solutions of some nonlinear systems of partial differential equations by using the first integral method Journal of Mathematical Analysis and Applications. ,vol. 387, pp. 807- 814 ,(2012) , 10.1016/J.JMAA.2011.09.044
M.G. Hafez, M.N. Alam, M.A. Akbar, Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system Journal of King Saud University - Science. ,vol. 27, pp. 105- 112 ,(2015) , 10.1016/J.JKSUS.2014.09.001
Abdul-Majid Wazwaz, Multiple-front solutions for the Burgers equation and the coupled Burgers equations Applied Mathematics and Computation. ,vol. 190, pp. 1198- 1206 ,(2007) , 10.1016/J.AMC.2007.02.003
Zheng-Yi Ma, Jin-Xi Fei, Yuan-Ming Chen, The residual symmetry of the (2+1)-dimensional coupled Burgers equation Applied Mathematics Letters. ,vol. 37, pp. 54- 60 ,(2014) , 10.1016/J.AML.2014.05.013
Mehdi Dehghan, Asgar Hamidi, Mohammad Shakourifar, The solution of coupled Burgers' equations using Adomian-Pade technique Applied Mathematics and Computation. ,vol. 189, pp. 1034- 1047 ,(2007) , 10.1016/J.AMC.2006.11.179
M. S. Osman, H. I. Abdel-Gawad, Multi-wave solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients European Physical Journal Plus. ,vol. 130, pp. 215- ,(2015) , 10.1140/EPJP/I2015-15215-1
Roman Cherniha, Liliia Muzyka, None, Lie symmetries of the shigesada–Kawasaki–Teramoto system Communications in Nonlinear Science and Numerical Simulation. ,vol. 45, pp. 81- 92 ,(2017) , 10.1016/J.CNSNS.2016.09.019