About the finite convergence of the proximal point algorithm

作者: O. Lefebvre , C. Michelot

DOI: 10.1007/978-3-0348-9297-1_11

关键词:

摘要: We study the finite convergence property of proximal point algorithm applied to partial inverse, with respect a subspace, subdifferential polyhedral convex function. Using examples we show how sufficient conditions providing can be realized and give case non termination.

参考文章(12)
Roland Durier, On Locally Polyhedral Convex Functions Trends in Mathematical Optimization. pp. 55- 66 ,(1988) , 10.1007/978-3-0348-9297-1_4
J.J. Moreau, Proximité et dualité dans un espace hilbertien Bulletin de la Société mathématique de France. ,vol. 79, pp. 273- 299 ,(1965) , 10.24033/BSMF.1625
Ulrich Eckhardt, Theorems on the dimension of convex sets Linear Algebra and its Applications. ,vol. 12, pp. 63- 76 ,(1975) , 10.1016/0024-3795(75)90127-5
Jonathan E. Spingarn, Applications of the method of partial inverses to convex programming: Decomposition Mathematical Programming. ,vol. 32, pp. 199- 223 ,(1985) , 10.1007/BF01586091
Jonathan E. Spingarn, A primal-dual projection method for solving systems of linear inequalities Linear Algebra and its Applications. ,vol. 65, pp. 45- 62 ,(1985) , 10.1016/0024-3795(85)90086-2
Roland Durier, Christian Michelot, Geometrical properties of the Fermat-Weber problem European Journal of Operational Research. ,vol. 20, pp. 332- 343 ,(1985) , 10.1016/0377-2217(85)90006-2
R. Tyrrell Rockafellar, Monotone Operators and the Proximal Point Algorithm SIAM Journal on Control and Optimization. ,vol. 14, pp. 877- 898 ,(1976) , 10.1137/0314056
Jonathan E. Spingarn, Partial Inverse of a Monotone Operator Applied Mathematics and Optimization. ,vol. 10, pp. 247- 265 ,(1983) , 10.1007/BF01448388
C. Michelot, O. Lefebvre, A primal-dual algorithm for the fermat-weber problem involving mixed gauges Mathematical Programming. ,vol. 39, pp. 319- 335 ,(1987) , 10.1007/BF02592080