Bilinear Backlund transformation and explicit solutions for a nonlinear evolution equation

作者: Wu Yong-Qi

DOI: 10.1088/1674-1056/19/4/040304

关键词:

摘要: The bilinear form of two nonlinear evolution equations are derived by using Hirota derivative. Backlund transformation based on the method for these presented, respectively. As an application, explicit solutions including soliton and stationary rational obtained.

参考文章(38)
Ivan Cherednik, Basic Methods of Soliton Theory ,(1996)
FAN EN-GUI, ZHANG HONG-QING, THE HOMOGENEOUS BALANCE METHOD FOR SOLVING NONLINEAR SOLITON EQUATIONS Acta Physica Sinica. ,vol. 47, pp. 353- 362 ,(1998) , 10.7498/APS.47.353
ED Belokolos, AI Bobenko, VZ Enol'ski, AR Its, VB Matveev, Algebro-geometric approach to nonlinear integrable equations Springer-Verlag. ,(1994)
Jon Nimmo, Claire Gilson, 良吾 広田, 敦 永井, The direct method in soliton theory ,(2004)
S Novikov, Sergei V Manakov, Lev Petrovich Pitaevskii, Vladimir Evgenevič Zakharov, Theory of Solitons: The Inverse Scattering Method ,(1984)
Takeshi Ikeda, Kanehisa Takasaki, Toroidal Lie algebras and Bogoyavlensky's 2 + 1-dimensional equation International Mathematics Research Notices. ,vol. 2001, pp. 329- 369 ,(2001) , 10.1155/S1073792801000162
R. Radha, M. Lakshmanan, Dromion like structures in the (2+1)-dimensional breaking soliton equation Physics Letters A. ,vol. 197, pp. 7- 12 ,(1995) , 10.1016/0375-9601(94)00926-G