Optimal Symmetric Multimodal Templates and Concatenated Random Forests for Supervised Brain Tumor Segmentation (Simplified) with ANTsR

作者: Nicholas J. Tustison , K. L. Shrinidhi , Max Wintermark , Christopher R. Durst , Benjamin M. Kandel

DOI: 10.1007/S12021-014-9245-2

关键词:

摘要: … Once the multivariate template has converged (typically in four … the template by flipping each asymmetric template component contralaterally and then running the multivariate template …

参考文章(50)
T. Das, R. Jena, D. H. Ye, E. Konukoglu, D. Zikic, C. Demiralp, O. M. Thomas, B. Glocker, J. Shotton, S. J. Price, A. Criminisi, Context-sensitive Classication Forests for Segmentation of Brain Tumor Tissues ,(2012)
G. N. Wilkinson, C. E. Rogers, Symbolic Description of Factorial Models for Analysis of Variance Applied statistics. ,vol. 22, pp. 392- 399 ,(1973) , 10.2307/2346786
H. P. Greenspan, Models for the Growth of a Solid Tumor by Diffusion Studies in Applied Mathematics. ,vol. 51, pp. 317- 340 ,(1972) , 10.1002/SAPM1972514317
Matthew Wiener, Andy Liaw, Classification and Regression by randomForest ,(2007)
Antonio Criminisi, Ender Konukoglu, Jamie Shotton, Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning Microsoft Technical Report. ,(2011)
Douglas A. Reynolds, Gaussian Mixture Models. Encyclopedia of Biometrics. pp. 659- 663 ,(2009)
David N. Louis, WHO classification of tumours of the central nervous system International Agency for Research on Cancer. ,(2007)
Zhao Yi, Antonio Criminisi, Jamie Shotton, Andrew Blake, Discriminative, Semantic Segmentation of Brain Tissue in MR Images medical image computing and computer assisted intervention. ,vol. 12, pp. 558- 565 ,(2009) , 10.1007/978-3-642-04271-3_68
Bjoern H. Menze, Koen van Leemput, Danial Lashkari, Marc-André Weber, Nicholas Ayache, Polina Golland, A Generative Model for Brain Tumor Segmentation in Multi-Modal Images Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. ,vol. 13, pp. 151- 159 ,(2010) , 10.1007/978-3-642-15745-5_19