PBPI: a high performance implementation of Bayesian phylogenetic inference

作者: Xizhou Feng , Kirk W. Cameron , Duncan A. Buell

DOI: 10.1145/1188455.1188535

关键词:

摘要: This paper describes the implementation and performance of PBPI, a parallel Bayesian phylogenetic inference method for DNA sequence data. By combining Markov Chain Monte Carlo (MCMC) with likelihood-based assessment phylogenies, inferences can incorporate complex statistic models into process tree estimation. However, analyses are extremely computationally expensive. PBPI uses algorithmic improvements processing to achieve significant improvement over comparable programs. We evaluated accuracy using simulated dataset on System X, terascale supercomputer at Virginia Tech. Our results show that identifies equivalent estimates 1424 times faster 256 processors than widely-used, best-available (albeit sequential), program. also achieves linear speedup number large problem sizes. Most importantly, framework enables analysis datasets previously impracticable.

参考文章(33)
Michael P. Cummings, BAMBE (Bayesian Analysis in Molecular Biology and Evolution) Dictionary of Bioinformatics and Computational Biology. ,(2014) , 10.1002/9780471650126.DOB0049.PUB2
John L. Gustafson, Reevaluating Amdahl's law Communications of the ACM. ,vol. 31, pp. 532- 533 ,(1988) , 10.1145/42411.42415
Z. Yang, B. Rannala, Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. Molecular Biology and Evolution. ,vol. 14, pp. 717- 724 ,(1997) , 10.1093/OXFORDJOURNALS.MOLBEV.A025811
Xizhou Feng, Duncan A. Buell, John R. Rose, Peter J. Waddell, Parallel algorithms for Bayesian phylogenetic inference Journal of Parallel and Distributed Computing. ,vol. 63, pp. 707- 718 ,(2003) , 10.1016/S0743-7315(03)00079-0
Stuart Geman, Donald Geman, Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-6, pp. 721- 741 ,(1984) , 10.1109/TPAMI.1984.4767596
Matthew J. Brauer, Mark T. Holder, Laurie A. Dries, Derrick J. Zwickl, Paul O. Lewis, David M. Hillis, Genetic Algorithms and Parallel Processing in Maximum-Likelihood Phylogeny Inference Molecular Biology and Evolution. ,vol. 19, pp. 1717- 1726 ,(2002) , 10.1093/OXFORDJOURNALS.MOLBEV.A003994
Daniel H. Huson, Scott M. Nettles, Tandy J. Warnow, Disk-covering, a fast-converging method for phylogenetic tree reconstruction. Journal of Computational Biology. ,vol. 6, pp. 369- 386 ,(1999) , 10.1089/106652799318337
Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, Edward Teller, Equation of State Calculations by Fast Computing Machines The Journal of Chemical Physics. ,vol. 21, pp. 1087- 1092 ,(1953) , 10.1063/1.1699114
Bob Mau, Michael A. Newton, Bret Larget, Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics. ,vol. 55, pp. 1- 12 ,(1999) , 10.1111/J.0006-341X.1999.00001.X