Local constants of motion imply information propagation

作者: M Friesdorf , A H Werner , M Goihl , J Eisert , W Brown

DOI: 10.1088/1367-2630/17/11/113054

关键词:

摘要: Interacting quantum many-body systems are expected to thermalize, in the sense that evolution of local expectation values approaches a stationary value resembling thermal ensemble. This intuition is notably contradicted exhibiting localisation (MBL). In stark contrast non-interacting case Anderson localisation, entanglement states grows without limit over time, albeit slowly. this work, we establish novel link between information theory and notions condensed matter physics, capturing phenomenon Heisenberg picture. We show mere existence constants motion, often taken as defining property MBL, together with generic spectrum Hamiltonian, already sufficient rigorously prove propagation: these can be used send classical bit arbitrary distances, impact perturbation detected arbitrarily far away. counterintuitive result compatible further corroborates slow growth following global quenches MBL systems. perform detailed analysis quasi-local motion also they indeed construct efficient spectral tensor networks, recently suggested. Our results provide at same time model-independent picture propagation

参考文章(34)
Anushya Chandran, Isaac H. Kim, Dmitry A. Abanin, Local integrals of motion and the logarithmic lightcone in many-body localized systems arXiv: Disordered Systems and Neural Networks. ,(2014)
Anatoli Polkovnikov, Krishnendu Sengupta, Alessandro Silva, Mukund Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems Reviews of Modern Physics. ,vol. 83, pp. 863- 883 ,(2011) , 10.1103/REVMODPHYS.83.863
A. Chandran, J. Carrasquilla, I. H. Kim, D. A. Abanin, G. Vidal, Spectral tensor networks for many-body localization Physical Review B. ,vol. 92, pp. 024201- ,(2015) , 10.1103/PHYSREVB.92.024201
Anushya Chandran, Isaac H. Kim, Guifre Vidal, Dmitry A. Abanin, Constructing local integrals of motion in the many-body localized phase Physical Review B. ,vol. 91, pp. 085425- ,(2015) , 10.1103/PHYSREVB.91.085425
Marcos Rigol, Vanja Dunjko, Maxim Olshanii, Thermalization and its mechanism for generic isolated quantum systems Nature. ,vol. 452, pp. 854- 858 ,(2008) , 10.1038/NATURE06838
Maksym Serbyn, Zlatko Papić, Dmitry A Abanin, Local conservation laws and the structure of the many-body localized states. Physical Review Letters. ,vol. 111, pp. 127201- ,(2013) , 10.1103/PHYSREVLETT.111.127201
David A. Huse, Rahul Nandkishore, Vadim Oganesyan, Phenomenology of fully many-body-localized systems Physical Review B. ,vol. 90, pp. 174202- ,(2014) , 10.1103/PHYSREVB.90.174202
Marko Žnidarič, Tomaž Prosen, Peter Prelovšek, Many-body localization in the Heisenberg X X Z magnet in a random field Physical Review B. ,vol. 77, pp. 064426- ,(2008) , 10.1103/PHYSREVB.77.064426
Artur S. L. Malabarba, Luis Pedro García-Pintos, Noah Linden, Terence C. Farrelly, Anthony J. Short, Quantum Systems Equilibrate Rapidly for Most Observables Physical Review E. ,vol. 90, pp. 012121- 012121 ,(2014) , 10.1103/PHYSREVE.90.012121