Extreme Ultra—violet Spectra

作者: R. A. Millikan , I. S. Bowen

DOI: 10.1103/PHYSREV.23.1

关键词:

摘要: Extreme ultra-violet spectra, to 136 A, of twenty light elements, H Cu.—Using the vacuum apparatus and explosive spark previously described, many plates have been made with a great variety electrodes. By measuring comparing thirty these, over 800 lines between A 1862 identified as belonging one or other elements studied. For H(1) only two lines, members Lyman series, were found; for He(2), Li(3) none, though carefully looked for; Be(4) doubtful weak line; Na(11) strong line λ372.3 λ376.6; B(5), C(6), N(7), O(8), F(9), Mg(12), Al(13), Si(14), P(15), S(16), Cl(17), K(19), Ca(20), Cr(24) Cu(29) from 9 160 each, all given in Tables. The strongest each are L series form progression like Moseley's x-ray lines: Li (red), Be 3131.19, B 2066.2, C 1335.0, N 1085.2, O 834.0, F 656.4, Na 372.3, Mg 231.6, Al 162.4. These mainly doublets, separation increasing regularly atomic number. M spectra also extend shorter wave-lengths higher number, reaching about 155 Cu, but on account complexity few identified. Other are: 2 diffuse sharp due Mg+ Mg(II), 5 Al+ Al++ Al(III), 11 Si(IV) probably first terms principal P(V). Interpretation Bohr theory. use Kossel equation connection available data it is shown that Na, 372.3 corresponds an electron jump shell L(I); Mg, 320.9, 323.2 231.6 correspond M(I)→L(II), M(I)→L(III) M(III)→L(I); Al, 162.4, 200.0, 230.8, 186.9 may jumps 3 shell; Ca, 655.9 669.6 N(I)→M(II) N(I)→M(III). interpretations give values constants levels atoms follows: L(I), ν/R=2.826; L(I) 4.298, L(II) 3.402, L(III) 3.381; 6.045, 5.008. square roots these linear functions Ca M(II), ν/R=1. 839, M(III) 1.810. From difference L(II)—L(III) screening constant comes out 3.1; M(III)—M(II) 7. results good agreement data. Ionization produced by vacuum.—The spectrum generally emitted stripped atoms, no valence electrons left, Na(I), Si(IV), P(V), etc.

参考文章(7)
R. A. Millikan, The Further Extension of the Ultra-violet Spectrum and the Progression with Atomic Number of the Spectra of Light Elements. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 7, pp. 289- 294 ,(1921) , 10.1073/PNAS.7.10.289
N. Bohr, D. Coster, Röntgenspektren und periodisches System der Elemente European Physical Journal. ,vol. 12, pp. 342- 374 ,(1923) , 10.1007/BF01328104
The effects of electron collisions with atmospheric neon Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 98, pp. 124- 146 ,(1920) , 10.1098/RSPA.1920.0058
Walter Grotrian, Das L-Dublett des Neon European Physical Journal. ,vol. 8, pp. 116- 125 ,(1922) , 10.1007/BF01329582
F. Paschen, Die Funkenspektren des Aluminiums. Teil II Annalen der Physik. ,vol. 376, pp. 537- 561 ,(1923) , 10.1002/ANDP.19233761602
The Series Spectrum of Trebly-Ionised Silicon (Si IV) Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 103, pp. 413- 429 ,(1923) , 10.1098/RSPA.1923.0067
The Carbon Arc Spectrum in the Extreme Ultra-Violet Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 102, pp. 484- 496 ,(1923) , 10.1098/RSPA.1923.0008