KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition

作者: Jian Yang , A.F. Frangi , Jing-Yu Yang , David Zhang , Zhong Jin

DOI: 10.1109/TPAMI.2005.33

关键词:

摘要: This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, ie, kernel principal component analysis (KPCA…

参考文章(50)
Joachim Weidmann, Linear Operators in Hilbert Spaces ,(1980)
Vivian Hutson, Michael J. Cloud, John S. Pym, Applications of functional analysis and operator theory ,(1980)
Mozer, B Schölkopf, M.J. Jordan, Cjc Burges, T. Petsche, Improving the accuracy and speed of support vector learning machines neural information processing systems. pp. 375- 381 ,(1997)
Bernhard Schölkopf, Neil D. Lawrence, Estimating a Kernel Fisher Discriminant in the Presence of Label Noise international conference on machine learning. pp. 306- 313 ,(2001)
Wenyi Zhao, Arvindh Krishnaswamy, Rama Chellappa, Daniel L. Swets, John Weng, Discriminant analysis of principal components for face recognition ieee international conference on automatic face and gesture recognition. pp. 336- 341 ,(1998) , 10.1007/978-3-642-72201-1_4
Keinosuke Fukunaga, Introduction to statistical pattern recognition (2nd ed.) Academic Press Professional, Inc.. ,(1990)
Jianhua Xu, Xuegong Zhang, Yanda Li, None, Kernel MSE algorithm: a unified framework for KFD, LS-SVM and KRR international joint conference on neural network. ,vol. 2, pp. 1486- 1491 ,(2001) , 10.1109/IJCNN.2001.939584
Jian Yang, Jing-yu Yang, David Zhang, Jian-feng Lu, Feature fusion: parallel strategy vs. serial strategy Pattern Recognition. ,vol. 36, pp. 1369- 1381 ,(2003) , 10.1016/S0031-3203(02)00262-5
Jian Yang, Jing-yu Yang, Why can LDA be performed in PCA transformed space Pattern Recognition. ,vol. 36, pp. 563- 566 ,(2003) , 10.1016/S0031-3203(02)00048-1