Some generalizations of Kadison's theorem: a survey

作者: T. S. S. R. K. Rao

DOI:

关键词:

摘要: Let H be a complex Hilbert space and let K(H) L(H) denote respectively the of compact bounded linear operators on H. A well known result Kadison [16] (see also Chapter 6 [9]) describes surjective isometries these spaces as T → UTV or UT trV , where U V are unitaries tr denotes Banach adjoint an operator via identification with H∗. For general X Y in this article we will consider various interpretations above order to completely describe K(X, ) L(X,Y ). Clearly for ∈ L(X) L(Y ), is isometry leaving compacts invariant. Such shall call standard isometries. Note that if : ∗ X∗ then ∗U L(X, We assume throughout note not isometric . This hypothesis missing from statement theorems [18] [33] In need form examples below). focus only following three variations Kadison’s theorem. recall bidual under canonical embedding bi-transpose K(H). And thus any onto 1. When describable form?

参考文章(32)
T. S. S. R. K. Rao, Local isometries of L(X, C(K)) Proceedings of the American Mathematical Society. ,vol. 133, pp. 2729- 2732 ,(2005)
Lajos Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)) Studia Mathematica. ,vol. 122, pp. 183- 193 ,(1997) , 10.4064/SM-122-2-183-193
R. Khalil, A. Saleh, Isometries of certain operator spaces Proceedings of the American Mathematical Society. ,vol. 132, pp. 1473- 1481 ,(2003) , 10.1090/S0002-9939-03-07210-1
James E. Jamison, Richard J. Fleming, Isometries on Banach Spaces: function spaces ,(2002)
T. S. S. R. K. Rao, Weakly Continuous Functions of Baire Class 1 Extracta mathematicae. ,vol. 15, pp. 207- 212 ,(2000)
Michael Cambern, The isometries of Proceedings of the American Mathematical Society. ,vol. 36, pp. 173- 178 ,(1972) , 10.1090/S0002-9939-1972-0306921-5
Peter Harmand, Dirk Werner, Wend Werner, M-Ideals in Banach Spaces and Banach Algebras ,(1993)