Deep learning and its applications to machine health monitoring

作者: Rui Zhao , Ruqiang Yan , Zhenghua Chen , Kezhi Mao , Peng Wang

DOI: 10.1016/J.YMSSP.2018.05.050

关键词:

摘要: … It should be noted that training deep neural networks often … neural networks such as deep convolutional neural network … a two-layer neural network forming a bipartite graph that consists …

参考文章(141)
Geoffrey E. Hinton, A Practical Guide to Training Restricted Boltzmann Machines Neural Networks: Tricks of the Trade (2nd ed.). pp. 599- 619 ,(2012) , 10.1007/978-3-642-35289-8_32
V. Filipovic, N. Nedic, V. Stojanovic, Robust identification of pneumatic servo actuators in the real situations Forschung im Ingenieurwesen. ,vol. 75, pp. 183- 196 ,(2011) , 10.1007/S10010-011-0144-5
Yang Fu, Yun Zhang, Haiyu Qiao, Dequn Li, Huamin Zhou, Jürgen Leopold, Analysis of Feature Extracting Ability for Cutting State Monitoring Using Deep Belief Networks Procedia CIRP. ,vol. 31, pp. 29- 34 ,(2015) , 10.1016/J.PROCIR.2015.03.016
Tan Junbo, Lu Weining, An Juneng, Wan Xueqian, Fault diagnosis method study in roller bearing based on wavelet transform and stacked auto-encoder chinese control and decision conference. pp. 4608- 4613 ,(2015) , 10.1109/CCDC.2015.7162738
Siqin Tao, Tao Zhang, Jun Yang, Xueqian Wang, Weining Lu, Bearing fault diagnosis method based on stacked autoencoder and softmax regression chinese control conference. pp. 6331- 6335 ,(2015) , 10.1109/CHICC.2015.7260634
Weining Lu, Xueqian Wang, Chunchun Yang, Tao Zhang, None, A novel feature extraction method using deep neural network for rolling bearing fault diagnosis chinese control and decision conference. pp. 2427- 2431 ,(2015) , 10.1109/CCDC.2015.7162328
René Vinicio Sánchez, Chuan Li, Zhiqiang Chen, Multi-layer neural network with deep belief network for gearbox fault diagnosis Journal of Vibroengineering. ,vol. 17, pp. 2379- 2392 ,(2015)
Çaglar Gülçehre, Yoshua Bengio, Yoshua Bengio, Yoshua Bengio, KyungHyun Cho, Junyoung Chung, Empirical evaluation of gated recurrent neural networks on sequence modeling arXiv: Neural and Evolutionary Computing. ,(2014)
Y. LI, T.R. KURFESS, S.Y. LIANG, STOCHASTIC PROGNOSTICS FOR ROLLING ELEMENT BEARINGS Mechanical Systems and Signal Processing. ,vol. 14, pp. 747- 762 ,(2000) , 10.1006/MSSP.2000.1301
Ming Yu, Danwei Wang, Ming Luo, Model-Based Prognosis for Hybrid Systems With Mode-Dependent Degradation Behaviors IEEE Transactions on Industrial Electronics. ,vol. 61, pp. 546- 554 ,(2014) , 10.1109/TIE.2013.2244538