M-estimator and D-optimality model construction using orthogonal forward regression

作者: X. Hong , S. Chen

DOI: 10.1109/TSMCB.2004.839910

关键词:

摘要: This correspondence introduces a new orthogonal forward regression (OFR) model identification algorithm using D-optimality for structure selection and is based on an M-estimators of parameter estimates. M-estimator classical robust estimation technique to tackle bad data conditions such as outliers. Computationally, The can be derived iterative reweighted least squares (IRLS) algorithm. robustness criterion in experimental design ill-conditioning structure. (OFR), often the modified Gram-Schmidt procedure, efficient method incorporating simultaneously. basic idea proposed approach incorporate IRLS inner loop into procedure. In this manner, OFR parsimonious determination extended with improved performance via derivation inherent Numerical examples are included demonstrate effectiveness

参考文章(18)
Steve R. Gunn, Martin Brown, Kev M. Bossley, Network Performance Assessment for Neurofuzzy Data Modelling intelligent data analysis. pp. 313- 323 ,(1997) , 10.1007/BFB0052850
X. Hong, S. Chen, M. Brown, C.J. Harris, Sparse model identification using orthogonal forward regression with basis pursuit and D-optimality IEE Proceedings - Control Theory and Applications. ,vol. 151, pp. 491- 498 ,(2004) , 10.1049/IP-CTA:20040693
K. L. Lee, S. A. Billings, Time series prediction using support vector machines, the orthogonal and the regularized orthogonal least-squares algorithms International Journal of Systems Science. ,vol. 33, pp. 811- 821 ,(2002) , 10.1080/0020772021000017317
S. CHEN, S. A. BILLINGS, W. LUO, Orthogonal least squares methods and their application to non-linear system identification International Journal of Control. ,vol. 50, pp. 1873- 1896 ,(1989) , 10.1080/00207178908953472
K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf, An introduction to kernel-based learning algorithms IEEE Transactions on Neural Networks. ,vol. 12, pp. 181- 201 ,(2001) , 10.1109/72.914517
J.T. Connor, R.D. Martin, L.E. Atlas, Recurrent neural networks and robust time series prediction IEEE Transactions on Neural Networks. ,vol. 5, pp. 240- 254 ,(1994) , 10.1109/72.279188
Y. Xia, J. Wang, A one-layer recurrent neural network for support vector machine learning systems man and cybernetics. ,vol. 34, pp. 1261- 1269 ,(2004) , 10.1109/TSMCB.2003.822955
S. Chen, X. Hong, C.J. Harris, Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design IEEE Transactions on Automatic Control. ,vol. 48, pp. 1029- 1036 ,(2003) , 10.1109/TAC.2003.812790
Mark J. L. Orr, Regularization in the selection of radial basis function centers Neural Computation. ,vol. 7, pp. 606- 623 ,(1995) , 10.1162/NECO.1995.7.3.606
X. Hong, C.J. Harris, Nonlinear model structure detection using optimum experimental design and orthogonal least squares IEEE Transactions on Neural Networks. ,vol. 12, pp. 435- 439 ,(2001) , 10.1109/72.914539