Performance Analysis and Comparison of Machine and Deep Learning Algorithms for IoT Data Classification.

作者: Masoumeh Rezaei , Meysam Vakili , Mohammad Ghamsari

DOI:

关键词:

摘要: … learning and deep learning techniques. This paper evaluates the performance of 11 popular machine and deep learning … according to several performance evaluation metrics including …

参考文章(35)
David Martin Ward Powers, None, Evaluation: from Precision, Recall and F-measure to ROC, Informedness, Markedness and Correlation arXiv: Learning. ,vol. 2, pp. 37- 63 ,(2011)
Zoubin Ghahramani, None, Probabilistic machine learning and artificial intelligence Nature. ,vol. 521, pp. 452- 459 ,(2015) , 10.1038/NATURE14541
Michael Collins, Robert E. Schapire, Yoram Singer, Logistic Regression, AdaBoost and Bregman Distances conference on learning theory. ,vol. 48, pp. 158- 169 ,(2000) , 10.1023/A:1013912006537
Denis Kleyko, Roland Hostettler, Wolfgang Birk, Evgeny Osipov, Comparison of Machine Learning Techniques for Vehicle Classification Using Road Side Sensors international conference on intelligent transportation systems. pp. 572- 577 ,(2015) , 10.1109/ITSC.2015.100
Asa Ben-Hur, Hava T. Siegelmann, Vladimir Vapnik, David Horn, Support vector clustering Journal of Machine Learning Research. ,vol. 2, pp. 125- 137 ,(2002) , 10.5555/944790.944807
Wei‐Yin Loh, Classification and regression trees Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery. ,vol. 1, pp. 14- 23 ,(2011) , 10.1002/WIDM.8
Oscar D. Lara, Miguel A. Labrador, A Survey on Human Activity Recognition using Wearable Sensors IEEE Communications Surveys and Tutorials. ,vol. 15, pp. 1192- 1209 ,(2013) , 10.1109/SURV.2012.110112.00192
Christopher D. Brown, Herbert T. Davis, Receiver operating characteristics curves and related decision measures: A tutorial Chemometrics and Intelligent Laboratory Systems. ,vol. 80, pp. 24- 38 ,(2006) , 10.1016/J.CHEMOLAB.2005.05.004
Sepp Hochreiter, Jürgen Schmidhuber, Long short-term memory Neural Computation. ,vol. 9, pp. 1735- 1780 ,(1997) , 10.1162/NECO.1997.9.8.1735