Some Numerical Studies of Turbulent Wake over Hills

作者: W. S. Weng , K. J. Richards , D. J. Carruthers

DOI: 10.1007/978-3-642-83822-4_61

关键词:

摘要: A numerical model of turbulent flow over a hill is described, which employs new expression for the mixing-length: \(\ell _m^{ - 1} = 1/\lambda + {A_B}/z {A_s}\langle \partial U/\partial z\rangle /\langle w'\rangle\). Previous studies hills, in closure assumptions are based on an isotropic eddy viscosity proportional to square root local value kinetic energy and mixing-length dependent upon distance from lower boundary (Taylor[1] Richards & Taylor[2]), run much faster than second-order (Newly[3]), but fail correctly lee side obstacle. In particular, there was no recognizable wake (Britter, Hunt Richards[4]). It found that present blocking-shear (BSML) gives results compare better computation experimental data.

参考文章(6)
P. R. Spalart, N. N. Mansour, J. C. R. Hunt, A general form for the dissipation length scale in turbulent shear flows stun. pp. 179- 184 ,(1987)
P. A. Taylor, Some numerical studies of surface boundary-layer flow above gentle topography Boundary-Layer Meteorology. ,vol. 11, pp. 439- 465 ,(1977) , 10.1007/BF02185870
K. J. Richards, P. A. Taylor, A numerical model of flow over sand waves in water of finite depth Geophysical Journal International. ,vol. 65, pp. 103- 128 ,(1981) , 10.1111/J.1365-246X.1981.TB02703.X
P. R. Gent, P. A. Taylor, A numerical model of the air flow above water waves Journal of Fluid Mechanics. ,vol. 77, pp. 105- 128 ,(1976) , 10.1017/S0022112076001158
R. E. Britter, J. C. R. Hunt, K. J. Richards, Air flow over a two-dimensional hill: studies of velocity speed-up, roughness effects and turbulence Quarterly Journal of the Royal Meteorological Society. ,vol. 107, pp. 91- 110 ,(1981) , 10.1002/QJ.49710745106
Trevor Michael Jeremy Newley, Turbulent air flow over hills. University of Cambridge. ,(1986)