Clustering analysis of the ground-state structure of the vertex-cover problem.

作者: Wolfgang Barthel , Alexander K. Hartmann

DOI: 10.1103/PHYSREVE.70.066120

关键词:

摘要: Vertex cover is one of the classical NP-complete problems in theoretical computer science. A vertex a graph subset vertices such that for each edge at least two endpoints contained subset. When studied on Erd\"os-R\'enyi random graphs (with connectivity $c$) observes threshold behavior: In thermodynamic limit size minimal independent specific graph. Recent analytical studies show phase boundary, small connectivities $cle$, system replica symmetric, while larger symmetry breaking occurs. This change coincides with typical running time algorithms from polynomial to exponential. To understand reasons this behavior and compare results, we numerically analyze structure solution landscape. For purpose, have also developed an algorithm, which allows calculation backbone, without need enumerate all solutions. We study exact solutions found branch-and-bound algorithm as well configurations obtained via Monte Carlo simulation. cluster landscape by direct clustering states, analyzing eigenvalue spectrum correlation matrices using hierarchical method. All results are compatible $c=e$. connectivities, collected finite number clusters, clusters diverges slowly breaking, but not one-step (1-RSB)

参考文章(53)
Marc Mézard, Riccardo Zecchina, Random K -satisfiability problem: From an analytic solution to an efficient algorithm Physical Review E. ,vol. 66, pp. 056126- ,(2002) , 10.1103/PHYSREVE.66.056126
G. Biroli, R. Monasson, M. Weigt, A variational description of the ground state structure in random satisfiability problems European Physical Journal B. ,vol. 14, pp. 551- 568 ,(2000) , 10.1007/S100510051065
Martin Weigt, Alexander K. Hartmann, Number of Guards Needed by a Museum: A Phase Transition in Vertex Covering of Random Graphs Physical Review Letters. ,vol. 84, pp. 6118- 6121 ,(2000) , 10.1103/PHYSREVLETT.84.6118
Marc Mézard, Giorgio Parisi, Riccardo Zecchina, Analytic and Algorithmic Solution of Random Satisfiability Problems Science. ,vol. 297, pp. 812- 815 ,(2002) , 10.1126/SCIENCE.1073287
M. Mézard, F. Ricci-Tersenghi, R. Zecchina, Two Solutions to Diluted p -Spin Models and XORSAT Problems Journal of Statistical Physics. ,vol. 111, pp. 505- 533 ,(2003) , 10.1023/A:1022886412117
Rémi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman, Lidror Troyansky, Determining computational complexity from characteristic 'phase transitions.' Nature. ,vol. 400, pp. 133- 137 ,(1999) , 10.1038/22055
Alexander K. Hartmann, Martin Weigt, Statistical mechanics perspective on the phase transition in vertex covering offinite-connectivity random graphs Theoretical Computer Science. ,vol. 265, pp. 199- 225 ,(2001) , 10.1016/S0304-3975(01)00163-3
Rémi Monasson, Riccardo Zecchina, Statistical mechanics of the randomK-satisfiability model Physical Review E. ,vol. 56, pp. 1357- 1370 ,(1996) , 10.1103/PHYSREVE.56.1357
R. Mulet, A. Pagnani, M. Weigt, R. Zecchina, Coloring random graphs. Physical Review Letters. ,vol. 89, pp. 268701- 268701 ,(2002) , 10.1103/PHYSREVLETT.89.268701
G Parisi, F Ritort, F Slanina, Several results on the finite-size corrections in the Sherrington- Kirkpatrick spin-glass model Journal of Physics A. ,vol. 26, pp. 3775- 3789 ,(1993) , 10.1088/0305-4470/26/15/026