On the stabilization of linear discrete-time systems

作者: Cristina Ferreira , Fernando C. Silva

DOI: 10.1016/J.LAA.2004.03.040

关键词:

摘要: Abstract A pair of matrices ( ,  B ), where is p  ×  and q , said to be positive stabilizable if there exists X such that  +  BX stable. In a previous paper, it was noticed Lyapunov’s criterium on matrix stability can generalized as follows: ) only exist definite H 1 2 AH * BH  > 0; generalization the main inertia theorem also given.

参考文章(12)
H.K Wimmer, On the Ostrowski-Schneider inertia theorem Journal of Mathematical Analysis and Applications. ,vol. 41, pp. 164- 169 ,(1973) , 10.1016/0022-247X(73)90190-X
Ion Zaballa, Interlacing and majorization in invariant factor assignment problems Linear Algebra and its Applications. ,vol. 121, pp. 409- 421 ,(1989) , 10.1016/0024-3795(89)90713-1
Alexander Ostrowski, Hans Schneider, Some theorems on the inertia of general matrices Journal of Mathematical Analysis and Applications. ,vol. 4, pp. 72- 84 ,(1962) , 10.1016/0022-247X(62)90030-6
Richard D. Hill, Inertia theory for simultaneously triangulable complex matrices Linear Algebra and its Applications. ,vol. 2, pp. 131- 142 ,(1969) , 10.1016/0024-3795(69)90022-6
Cristina Ferreira, Fernando C. Silva, Inertia theorems for pairs of matrices, II Linear Algebra and its Applications. ,vol. 413, pp. 425- 439 ,(2004) , 10.1016/J.LAA.2003.11.022
Olga Taussky, Matrices C with Cn → 0 Journal of Algebra. ,vol. 1, pp. 5- 10 ,(1964) , 10.1016/0021-8693(64)90003-1
Harald K. Wimmer, Existenzsätze in der Theorie der Matrizen und lineare Kontrolltheorie Monatshefte für Mathematik. ,vol. 78, pp. 256- 263 ,(1974) , 10.1007/BF01297280
Olga Taussky, A Generalization of a Theorem of Lyapunov Journal of The Society for Industrial and Applied Mathematics. ,vol. 9, pp. 640- 643 ,(1961) , 10.1137/0109053
Feliks Ruvimovich Gantmakher, None, The Theory of Matrices ,(1984)