Model checking for fragments of Halpern and Shoham's interval temporal logic based on track representatives

作者: Alberto Molinari , Angelo Montanari , Adriano Peron

DOI: 10.1016/J.IC.2017.08.011

关键词:

摘要: Abstract Model checking allows one to automatically verify a specification of the expected properties system against formal model its behavior (generally, Kripke structure). Point-based temporal logics, such as LTL, CTL, and CTL⁎, that describe how evolves state-by-state, are commonly used languages. They proved themselves quite successful in variety application domains. However, constraining ordering temporally extended events well involving aggregations, which inherently interval-based, can not be properly dealt with by them. Interval logics (ITLs), take intervals their primitive entities, turn out well-suited for verification interval computations (we interpret all tracks structure computation intervals). In this paper, we study problem some fragments Halpern Shoham's modal logic time (HS). HS features modality each possible relation between pairs (the so-called Allen's relations). First, an EXPSPACE algorithm fragment relations meets, met-by, starts, started-by, finishes, exploits possibility finding, track (of unbounded length), equivalent bounded-length representative. While property, it only needs consider whose length does exceed given bound. Then, prove PSPACE-hard. Finally, identify other well-behaved expressive enough capture meaningful systems, mutual exclusion, state reachability, non-starvation, computational complexity is less than or equal LTL.

参考文章(35)
Alessio R. Lomuscio, Jakub Michaliszyn, An epistemic Halpern-Shoham logic international joint conference on artificial intelligence. pp. 1010- 1016 ,(2013)
Angelo Montanari, Gabriele Puppis, Pietro Sala, Maximal Decidable Fragments of Halpern and Shoham’s Modal Logic of Intervals Automata, Languages and Programming. ,vol. 6199, pp. 345- 356 ,(2010) , 10.1007/978-3-642-14162-1_29
Philippe Schnoebelen, Oracle circuits for branching-time model checking international colloquium on automata languages and programming. pp. 790- 801 ,(2003) , 10.1007/3-540-45061-0_62
Fausto Giunchiglia, Paolo Traverso, Planning as Model Checking Lecture Notes in Computer Science. pp. 1- 20 ,(1999) , 10.1007/10720246_1
Benjamin Charles Moszkowski, Reasoning about Digital Circuits ,(1983)
Jerzy Marcinkowski, Jakub Michaliszyn, The Undecidability of the Logic of Subintervals Fundamenta Informaticae. ,vol. 131, pp. 217- 240 ,(2014) , 10.3233/FI-2014-1011
Guido Sciavicco, Davide Bresolin, Dario Della Monica, Valentin Goranko, Angelo Montanari, The dark side of interval temporal logic: marking the undecidability border Annals of Mathematics and Artificial Intelligence. ,vol. 71, pp. 41- 83 ,(2014) , 10.1007/S10472-013-9376-4
Joseph Y. Halpern, Yoav Shoham, A propositional modal logic of time intervals Journal of the ACM. ,vol. 38, pp. 935- 962 ,(1991) , 10.1145/115234.115351
Michael R. Hansen, Anh-Dung Phan, Aske W. Brekling, A practical approach to model checking Duration Calculus using Presburger Arithmetic Annals of Mathematics and Artificial Intelligence. ,vol. 71, pp. 251- 278 ,(2014) , 10.1007/S10472-013-9373-7