Minimizing movements for mean curvature flow of droplets with prescribed contact angle

作者: G. Bellettini , Sh.Yu. Kholmatov

DOI: 10.1016/J.MATPUR.2018.06.003

关键词:

摘要: Abstract We study the mean curvature motion of a droplet flowing by on horizontal hyperplane with possibly nonconstant prescribed contact angle. Using solutions constructed as limit an approximation algorithm Almgren–Taylor–Wang and Luckhaus–Sturzenhecker, we show existence weak evolution, its compatibility distributional solution. also prove various comparison results.

参考文章(43)
Nicola Taddia, Umberto Massari, Generalized Minimizing Movements for the Mean Curvature Flow with Dirichlet Boundary Condition. Annali Dell'universita' Di Ferrara. ,vol. 45, pp. 25- 55 ,(1999) , 10.1007/BF02825943
Claudio Verdi, Giovanni Bellettini, Maurizio Paolini, Convex approximations of functionals with curvature Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni. ,vol. 2, pp. 297- 306 ,(1991)
Kenneth A. Brakke, Jean Berthier, The physics of microdroplets John Wiley & Sons, Inc , Scrivener Publishing. ,(2012)
Robert Finn, Equilibrium Capillary Surfaces ,(1985)
Diego Pallara, Luigi Ambrosio, Nicola Fusco, Functions of Bounded Variation and Free Discontinuity Problems ,(2000)
Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré, Gradient Flows: In Metric Spaces and in the Space of Probability Measures ,(2005)