Exact C*-Algebras, Tensor Products, and the Classification of Purely Infinite Algebras

作者: Eberhard Kirchberg

DOI: 10.1007/978-3-0348-9078-6_87

关键词:

摘要: Our survey (and the reference list) does not reflect history of tensor products operator algebras. Here we make use product functors on category C-algebras as a unifying principle. An application our theory to classification problem Elliott [13] can be found at end this paper. Throughout paper algebra means C*-algebra and vN-algebra von Neumann algebra. L (H) is bounded operators Hilbert space infinite dimension.

参考文章(38)
George A. Elliott, The Classification Problem for Amenable C*-Algebras Birkhäuser Basel. pp. 922- 932 ,(1995) , 10.1007/978-3-0348-9078-6_85
Man-Duen Choi, A schwarz inequality for positive linear maps on $C^{\ast}$-algebras Illinois Journal of Mathematics. ,vol. 18, pp. 565- 574 ,(1974) , 10.1215/IJM/1256051007
Bruce Blackadar, K-Theory for Operator Algebras ,(1986)
Uffe Haagerup, Quasitraces on Exact $C^\ast$-Algebras are Traces arXiv: Operator Algebras. ,vol. 858, pp. 106- 129 ,(1994)
Eberhard Kirchberg, Commutants of unitaries in UHF algebras and functorial properties of exactness. Crelle's Journal. ,vol. 452, pp. 39- 78 ,(1994)
Simon Wassermann, Exact C*-algebras and related topics Seoul National University. ,(1994)
Gilles Pisier, Exact operator spaces arXiv: Functional Analysis. ,(1993)
Tadasi Huruya, Seung-Hyeok Kye, Fubini Products of C∗-algebras and Applications to C∗-exactness Publications of The Research Institute for Mathematical Sciences. ,vol. 24, pp. 765- 773 ,(1988) , 10.2977/PRIMS/1195174694
David P Blecher, Vern I Paulsen, Tensor products of operator spaces Journal of Functional Analysis. ,vol. 99, pp. 262- 292 ,(1991) , 10.1016/0022-1236(91)90042-4
Joachim Cuntz, Simple $C^*$-algebras generated by isometries Communications in Mathematical Physics. ,vol. 57, pp. 173- 185 ,(1977) , 10.1007/BF01625776