Sufficient condition for nonexistence of symmetric extension of qudits using Bell inequalities

作者: Meenu Kumari , Shohini Ghose , Robert B. Mann

DOI: 10.1103/PHYSREVA.96.012128

关键词:

摘要: We analyze the connection between Bell inequality violations and symmetric extendibility of quantum states. prove that 2-qubit reduced states multiqubit pure do not violate Clauser-Horne-Shimony-Holt (CHSH) inequality. then more general converse any state violates CHSH cannot have a extension. extend our analysis to qudits provide test for 2-qudit show if is monogamous, this does For specific case 2-qutrit states, we use numerical evidence conjecture Collins-Gisin-Linden-Massar-Popescu (CGLMP) monogamous. Hence, violation CGLMP by could be sufficient condition nonexistence its

参考文章(21)
Jianxin Chen, Zhengfeng Ji, David Kribs, Norbert Lütkenhaus, Bei Zeng, Symmetric extension of two-qubit states Physical Review A. ,vol. 90, pp. 032318- ,(2014) , 10.1103/PHYSREVA.90.032318
Miguel Navascués, Masaki Owari, Martin B. Plenio, Power of symmetric extensions for entanglement detection Physical Review A. ,vol. 80, pp. 052306- ,(2009) , 10.1103/PHYSREVA.80.052306
Fernando G. S. L. Brandão, Matthias Christandl, Detection of Multiparticle Entanglement: Quantifying the Search for Symmetric Extensions Physical Review Letters. ,vol. 109, pp. 160502- ,(2012) , 10.1103/PHYSREVLETT.109.160502
Geir Ove Myhr, Norbert Lütkenhaus, Spectrum conditions for symmetric extendible states Physical Review A. ,vol. 79, pp. 062307- ,(2009) , 10.1103/PHYSREVA.79.062307
Lieven Vandenberghe, Stephen Boyd, Semidefinite Programming SIAM Review. ,vol. 38, pp. 49- 95 ,(1996) , 10.1137/1038003
Andrew C. Doherty, Pablo A. Parrilo, Federico M. Spedalieri, Detecting multipartite entanglement Physical Review A. ,vol. 71, pp. 032333- ,(2005) , 10.1103/PHYSREVA.71.032333
Kedar S Ranade, Symmetric extendibility for a class of qudit states Journal of Physics A. ,vol. 42, pp. 425302- ,(2009) , 10.1088/1751-8113/42/42/425302
Peter D. Johnson, Lorenza Viola, Compatible quantum correlations: Extension problems for Werner and isotropic states Physical Review A. ,vol. 88, pp. 032323- ,(2013) , 10.1103/PHYSREVA.88.032323