Moving frames and prolongation algebras

作者: Frank B. Estabrook

DOI: 10.1063/1.525248

关键词:

摘要: We consider differential ideals generated by sets of 2‐forms which can be written with constant coefficients in a canonical basis 1‐forms. By setting up Cartan–Ehresmann connection, fiber bundle over base space the live, one finds an incomplete Lie algebra vector fields fibers. Conversely, given this (a prolongation algebra), derive ideal. The two constructs are thus dual, and analysis either derives properties both. Such systems arise classical geometry moving frames. Examples discussed, together examples arising more recently: Korteweg–de Vries Harrison–Ernst systems.

参考文章(9)
W. F. Shadwick, The KdV prolongation algebra Journal of Mathematical Physics. ,vol. 21, pp. 454- 461 ,(1980) , 10.1063/1.524442
S.S. Chern, C.L. Terng, An analogue of Bäcklund's theorem in affine geometry Rocky Mountain Journal of Mathematics. ,vol. 10, pp. 105- 124 ,(1980) , 10.1216/RMJ-1980-10-1-105
F. B. Estabrook, H. D. Wahlquist, Prolongation structures of nonlinear evolution equations. II Journal of Mathematical Physics. ,vol. 17, pp. 1293- 1297 ,(1976) , 10.1063/1.523056
Hugo D. Wahlquist, Frank B. Estabrook, Backlund transformation for solutions of the Korteweg-de Vries equation Physical Review Letters. ,vol. 31, pp. 1386- 1390 ,(1973) , 10.1103/PHYSREVLETT.31.1386
B. Kent Harrison, Bäcklund Transformation for the Ernst Equation of General Relativity. Physical Review Letters. ,vol. 41, pp. 1197- 1200 ,(1978) , 10.1103/PHYSREVLETT.41.1197
L. E. Evtushik, Yu. G. Lumiste, N. M. Ostianu, A. P. Shirokov, Differential-geometric structures on manifolds Journal of Mathematical Sciences. ,vol. 14, pp. 1573- 1719 ,(1980) , 10.1007/BF01084960
F. A. E. Pirani, D. C. Robinson, W. F. Shadwick, Local Jet Bundle Formulation of Bäcklund Transformations Springer Netherlands. ,(1979) , 10.1007/978-94-009-9511-6