Biclustering with heterogeneous variance

作者: G. Chen , P. F. Sullivan , M. R. Kosorok

DOI: 10.1073/PNAS.1304376110

关键词:

摘要: In cancer research, as in all of medicine, it is important to classify patients into etiologically and therapeutically relevant subtypes improve diagnosis treatment. One way do this use clustering methods find subgroups homogeneous individuals based on genetic profiles together with heuristic clinical analysis. A notable drawback existing that they ignore the possibility variance gene expression profile measurements can be heterogeneous across subgroups, not consider heterogeneity lead inaccurate subgroup prediction. Research has shown hypervariability a common feature among subtypes. paper, we present statistical approach capture both mean structure data. We demonstrate strength our method synthetic data two sets. particular, confirms methylation level patients, detects clearer patterns lung

参考文章(18)
George M. Church, Yizong Cheng, Biclustering of Expression Data intelligent systems in molecular biology. ,vol. 8, pp. 93- 103 ,(2000)
Hui Zou, Trevor Hastie, Robert Tibshirani, Sparse Principal Component Analysis Journal of Computational and Graphical Statistics. ,vol. 15, pp. 265- 286 ,(2006) , 10.1198/106186006X113430
Yufeng Liu, David Neil Hayes, Andrew Nobel, J. S Marron, Statistical Significance of Clustering for High-Dimension, Low–Sample Size Data Journal of the American Statistical Association. ,vol. 103, pp. 1281- 1293 ,(2008) , 10.1198/016214508000000454
Mihee Lee, Haipeng Shen, Jianhua Z. Huang, J. S. Marron, Biclustering via Sparse Singular Value Decomposition Biometrics. ,vol. 66, pp. 1087- 1095 ,(2010) , 10.1111/J.1541-0420.2010.01392.X
Heather Turner, Trevor Bailey, Wojtek Krzanowski, Improved biclustering of microarray data demonstrated through systematic performance tests Computational Statistics & Data Analysis. ,vol. 48, pp. 235- 254 ,(2005) , 10.1016/J.CSDA.2004.02.003
Peter D Hoff, Model Averaging and Dimension Selection for the Singular Value Decomposition Journal of the American Statistical Association. ,vol. 102, pp. 674- 685 ,(2006) , 10.1198/016214506000001310
Haipeng Shen, Jianhua Z. Huang, Sparse principal component analysis via regularized low rank matrix approximation Journal of Multivariate Analysis. ,vol. 99, pp. 1015- 1034 ,(2008) , 10.1016/J.JMVA.2007.06.007
Daniela M. Witten, Robert Tibshirani, A framework for feature selection in clustering Journal of the American Statistical Association. ,vol. 105, pp. 713- 726 ,(2010) , 10.1198/JASA.2010.TM09415
Jianqing Fan, Runze Li, Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties Journal of the American Statistical Association. ,vol. 96, pp. 1348- 1360 ,(2001) , 10.1198/016214501753382273
Stanislav Busygin, Oleg Prokopyev, Panos M. Pardalos, Biclustering in data mining Computers & Operations Research. ,vol. 35, pp. 2964- 2987 ,(2008) , 10.1016/J.COR.2007.01.005