Properties of Gauss Digitized Shapes and Digital Surface Integration

作者: Jacques-Olivier Lachaud , Boris Thibert

DOI: 10.1007/S10851-015-0595-7

关键词:

摘要: This paper presents new topological and geometric properties of Gauss digitizations Euclidean shapes, most them holding in arbitrary dimension d. We focus on r-regular shapes sampled by digitization at gridstep h. The digitized boundary is shown to be close the Hausdorff sense, minimum distance $$\frac{\sqrt{d}}{2}h$$d2h being achieved projection map $$\xi $$? induced distance. Although it known that boundaries may not manifold when $$d \ge 3$$d?3, we show non-manifoldness only occur places where normal vector almost aligned with some axis, limit angle decreases then have a closer look onto continuous $$?. size its non-injective part tends zero leads us study classical digital surface integration scheme, which allocates measure each element proportional cosine between an estimated trivial vector. convergent whenever estimator multigrid convergent, explicit convergence speed. Since estimators are now available literature, provides for objects.

参考文章(49)
David Coeurjolly, Jacques-Olivier Lachaud, Tristan Roussillon, Multigrid Convergence of Discrete Geometric Estimators Digital Geometry Algorithms. pp. 395- 424 ,(2012) , 10.1007/978-94-007-4174-4_13
Louis Cuel, Jacques-Olivier Lachaud, Boris Thibert, Voronoi-Based Geometry Estimator for 3D Digital Surfaces discrete geometry for computer imagery. pp. 134- 149 ,(2014) , 10.1007/978-3-319-09955-2_12
Theo Pavlidis, Algorithms for Graphics and Imag W. H. Freeman & Co.. ,(1983)
David Coeurjolly, Frédéric Flin, Olivier Teytaud, Laure Tougne, Multigrid convergence and surface area estimation Lecture Notes in Computer Science. ,vol. 2616, pp. 101- 119 ,(2002) , 10.1007/3-540-36586-9_7
Alexandre Lenoir, Rémy Malgouyres, Marinette Revenu, Fast computation of the normal vector field of the surface of a 3-D discrete object discrete geometry for computer imagery. ,vol. 1176, pp. 101- 112 ,(1996) , 10.1007/3-540-62005-2_9
Laurent Provot, Yan Gérard, Estimation of the derivatives of a digital function with a convergent bounded error discrete geometry for computer imagery. pp. 284- 295 ,(2011) , 10.1007/978-3-642-19867-0_24
Reinhard Klette, Hao Jie Sun, Digital Planar Segment Based Polyhedrization for Surface Area Estimation Lecture Notes in Computer Science. pp. 356- 366 ,(2001) , 10.1007/3-540-45129-3_32
Herbert Federer, Geometric Measure Theory ,(1969)
Reinhard Klette, Joviša Žunić, Multigrid Convergence of Calculated Features in Image Analysis Journal of Mathematical Imaging and Vision. ,vol. 13, pp. 173- 191 ,(2000) , 10.1023/A:1011289414377
Christian Ronse, Mohamed Tajine, Discretization in Hausdorff Space Journal of Mathematical Imaging and Vision. ,vol. 12, pp. 219- 242 ,(2000) , 10.1023/A:1008366032284