A classification of irreducible prehomogeneous vector spaces and their relative invariants

作者: M. Sato , T. Kimura

DOI: 10.1017/S0027763000017633

关键词:

摘要: LetGbe a connected linear algebraic group, andpa rational representation ofGon a finite-dimensional vector spaceV, all defined over the complex number fieldC.We call such a triplet (G, p, V) aprehomogeneous vector spaceifVhas a Zariski-denseG-orbit. The main purpose of this paper is to classify all prehomogeneous vector spaces whenpis irreducible, and to investigate their relative invariants and the regularity.

参考文章(9)
Claude C. Chevalley, The algebraic theory of spinors Columbia University Press. ,(1954) , 10.7312/CHEV93056
Nathan Jacobson, Exceptional Lie Algebras ,(1971)
Yozô Matsushima, Espaces homogènes de Stein des groupes de Lie complexes Nagoya Mathematical Journal. ,vol. 16, pp. 205- 218 ,(1960) , 10.1017/S0027763000002294
D. Luna, Sur les orbites ferm�es des groupes alg�briques r�ductifs Inventiones Mathematicae. ,vol. 16, pp. 1- 5 ,(1972) , 10.1007/BF01391210
Takuro SHINTANI, On Dirichlet series whose coefficients are class numbers of integral binary cubic forms Journal of The Mathematical Society of Japan. ,vol. 24, pp. 132- 188 ,(1972) , 10.2969/JMSJ/02410132
C. Chevalley, R. D. Schafer, The Exceptional Simple Lie Algebras F4 and E6 Proceedings of the National Academy of Sciences. ,vol. 36, pp. 137- 141 ,(1950) , 10.1073/PNAS.36.2.137
Jun-Ichi Igusa, A Classification of Spinors Up to Dimension Twelve American Journal of Mathematics. ,vol. 92, pp. 997- ,(1970) , 10.2307/2373406
R. C. King, The Dimensions of Irreducible Tensor Representations of the Orthogonal and Symplectic Groups Canadian Journal of Mathematics. ,vol. 23, pp. 176- 188 ,(1971) , 10.4153/CJM-1971-017-2
Mikio Sato, Takuro Shintani, On Zeta Functions Associated with Prehomogeneous Vector Spaces The Annals of Mathematics. ,vol. 100, pp. 131- ,(1974) , 10.2307/1970844