Intelligent configuration of data visualizations

作者: Pedram Faghihi Rezaei , Sachin Patney , Patrick J Baumgartner , Matthew J. Longley

DOI:

关键词:

摘要: The techniques described herein determine configurations for data visualizations based on characteristics interpreted from input data. Input including a plurality of images may be obtained. For instance, the include one or more files containing associated with an entity. disclosed characteristic, such as primary color, individual entity subject to characteristic. Techniques also involve generation output defining visualization A rendering provides indication subject. In some configurations, graphical association between in dataset and

参考文章(22)
Erez Kikin-Gil, Igor Zaika, Matthew J. Kotler, Charles W. Parker, B. Scott Ruble, Ned B. Friend, Authoring of Data Visualizations and Maps ,(2011)
Benjamin Chronister, William G. Morein, Christian Bernd Schormann, Brian Scott Ruble, Barry James Givens, Jakob Peter Nielsen, Jason Joseph Weber, Thomas Michael Casey, Nathan Paul McCoy, George G. Robertson, Joshua Wyndham Lee, Dynamically adapting visualizations ,(2008)
John J. Baier, Sujeet Chand, Stephen C. Briant, Richard A. Morse, Randall A. Marquardt, David W. Farchmin, Michael D. Kalan, Systems and methods for automatic visualization configuration ,(2014)
Christof Rezk-Salama, Peter Hastreiter, Günther Greiner, Jörg Scherer, Automatic Adjustment of Transfer Functions for 3D Volume Visualization. vision modeling and visualization. pp. 357- 364 ,(2000)
Andrew Frederick Kurtz, John Norvold Border, Donald Edward Olson, Kevin Michael Gobeyn, Monitoring physiological conditions ,(2008)
Mingjing Li, Wei-Ying Ma, Zhiwei Li, Yuanhao Chen, Extracting dominant colors from images using classification techniques ,(2007)