Survey of Markov Logic Networks

作者: 元子 徐

DOI: 10.12677/SEA.2015.43010

关键词:

摘要: Markov逻辑网是将Markov网络与一阶谓词逻辑相结合的统计关系学习模型。Markov逻辑网在实体识别、数据融合、信息抽取等领域都有重要研究价值,具有广泛的应用。本文较为全面的介绍了Markov逻辑网的理论模型、推理、参数学习、与其他算法的比较,最后探讨Markov逻辑网未来的研究方向。 Markov logic networks (MLNs) is a kind of statistical relational learning model which combines network and first-order together. MLNs has the significant research value in many areas it widely applications, such as entity recognition, data integration information extrac-tion. In this paper, we introduced theoretical networks, inference pa-rametric compared with other. end, discussed future works MLNs.

参考文章(32)
Parag Singla, Pedro Domingos, Discriminative training of Markov logic networks national conference on artificial intelligence. pp. 868- 873 ,(2005)
Yoshitaka Kameya, Taisuke Sato, PRISM: a language for symbolic-statistical modeling international joint conference on artificial intelligence. pp. 1330- 1335 ,(1997)
Parag Singla, Pedro Domingos, Memory-efficient inference in relational domains national conference on artificial intelligence. pp. 488- 493 ,(2006)
Hoifung Poon, Pedro Domingos, Sound and efficient inference with probabilistic and deterministic dependencies national conference on artificial intelligence. pp. 458- 463 ,(2006)
Pedro Chahuara, François Portet, Michel Vacher, Making Context Aware Decision from Uncertain Information in a Smart Home: A Markov Logic Network Approach ambient intelligence. ,vol. 8309, pp. 78- 93 ,(2013) , 10.1007/978-3-319-03647-2_6
Nir Friedman, Daniel L. Koller, Probabilistic graphical models : principles and techniques The MIT Press. ,(2009)
Sebastian Riedel, Improving the accuracy and efficiency of MAP inference for Markov Logic uncertainty in artificial intelligence. pp. 468- 475 ,(2008)
Tak-Lam Wong, Learning Markov logic networks with limited number of labeled training examples International Journal of Knowledge-based and Intelligent Engineering Systems. ,vol. 18, pp. 91- 98 ,(2014) , 10.3233/KES-140289
Finn B. Jensen, Thomas Graven-Nielsen, Bayesian networks and decision graphs ,(2001)