A Parallel Implementation of the Ensemble Kalman Filter Based on Modified Cholesky Decomposition

作者: Xinwei Deng , Elias D. Nino , Elias D. Nino , Adrian Sandu

DOI:

关键词:

摘要: This paper discusses an efficient parallel implementation of the ensemble Kalman filter based on modified Cholesky decomposition. The proposed starts with decomposing domain into sub-domains. In each sub-domain a sparse estimation inverse background error covariance matrix is computed via decomposition; estimates are concurrently separate processors. sparsity this estimator dictated by conditional independence model components for some radius influence. Then, assimilation step carried out in without need inter-processor communication. Once local analysis states computed, sub-domains mapped back onto global to obtain ensemble. Computational experiments performed using Atmospheric General Circulation Model (SPEEDY) T-63 resolution Blueridge cluster at Virginia Tech. number processors used ranges from 96 2,048. outperforms terms accuracy well-known transform (LETKF) all variables. computational time similar that LETKF method (where no performed). Finally, largest processors, 400 times faster than serial version method.

参考文章(14)
J. Dongarra, J. Demmel, C. Bischof, A. McKenney, Z. Bai, D. Sorensen, A. Greenbaum, E. Anderson, S. Hammarling, J. Du Croz, LAPACK: a portable linear algebra library for high-performance computers conference on high performance computing (supercomputing). pp. 2- 11 ,(1990) , 10.5555/110382.110385
Alexandre A. Emerick, Albert C. Reynolds, Ensemble smoother with multiple data assimilation Computers & Geosciences. ,vol. 55, pp. 3- 15 ,(2013) , 10.1016/J.CAGEO.2012.03.011
Pavel Sakov, Laurent Bertino, Relation between two common localisation methods for the EnKF Computational Geosciences. ,vol. 15, pp. 225- 237 ,(2011) , 10.1007/S10596-010-9202-6
Sheetal Lahabar, P. J. Narayanan, Singular value decomposition on GPU using CUDA international parallel and distributed processing symposium. pp. 1- 10 ,(2009) , 10.1109/IPDPS.2009.5161058
Y. Liu, A. H. Weerts, M. Clark, H.-J. Hendricks Franssen, S. Kumar, H. Moradkhani, D.-J. Seo, D. Schwanenberg, P. Smith, A. I. J. M. van Dijk, N. van Velzen, M. He, H. Lee, S. J. Noh, O. Rakovec, P. Restrepo, Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities Hydrology and Earth System Sciences. ,vol. 16, pp. 3863- 3887 ,(2012) , 10.5194/HESS-16-3863-2012
Lars Nerger, Wolfgang Hiller, Software for ensemble-based data assimilation systems-Implementation strategies and scalability Computers & Geosciences. ,vol. 55, pp. 110- 118 ,(2013) , 10.1016/J.CAGEO.2012.03.026