The Asymptotic Variance of the Continuous-Time Kernel Estimator with Applications to Bandwidth Selection

作者: M. Sköld

DOI: 10.1023/A:1017520326698

关键词:

摘要: We derive simple expressions for the asymptotic variance of kernel-density estimator a stationary continuous-time process in one and d dimensions relate convergence rates to sample path smoothness. Important applications include methods selecting optimal smoothing parameters construction confidence bands testing hypotheses about density. In simulation study results are applied bandwidth selection discrete-time processes that can be modelled as sampled at high rate.

参考文章(23)
Jeffrey D. Hart, Some automated methods of smoothing time-dependent data Journal of Nonparametric Statistics. ,vol. 6, pp. 115- 142 ,(1996) , 10.1080/10485259608832667
Denis Bosq, Florence Merlevède, Magda Peligrad, Asymptotic Normality for Density Kernel Estimators in Discrete and Continuous Time Journal of Multivariate Analysis. ,vol. 68, pp. 78- 95 ,(1999) , 10.1006/JMVA.1998.1785
Martin Sköld, Ola Hössjer, On the asymptotic variance of the continuous-time kernel density estimator Statistics & Probability Letters. ,vol. 44, pp. 97- 106 ,(1999) , 10.1016/S0167-7152(98)00297-1
Yu.A. Kutoyants, Some problems of nonparametric estimation by observations of ergodic diffusion process Statistics & Probability Letters. ,vol. 32, pp. 311- 320 ,(1997) , 10.1016/S0167-7152(96)00088-0
Lanh Tat Tran, On multivariate variable-kernel density estimates for time series Canadian Journal of Statistics-revue Canadienne De Statistique. ,vol. 19, pp. 371- 387 ,(1991) , 10.2307/3315428
Jeffrey D. Hart, Thomas E. Wehrly, Kernel Regression Estimation Using Repeated Measurements Data Journal of the American Statistical Association. ,vol. 81, pp. 1080- 1088 ,(1986) , 10.1080/01621459.1986.10478377
Theophilos Cacoullos, Estimation of a multivariate density Annals of the Institute of Statistical Mathematics. ,vol. 18, pp. 179- 189 ,(1966) , 10.1007/BF02869528