Analysis of global surface ocean alkalinity to determine controlling processes

作者: Claudia H. Fry , Toby Tyrrell , Mathis P. Hain , Nicholas R. Bates , Eric P. Achterberg

DOI: 10.1016/J.MARCHEM.2015.05.003

关键词:

摘要: The export of calcium carbonate (CaCO3) from the surface ocean is poorly constrained. A better understanding magnitude and spatial distribution this flux would improve our knowledge carbon cycle marine biogeochemistry. Here, we investigate controls over total alkalinity in global produce a tracer for CaCO3 cycling. We took bottle data databases (GLODAP, CARINA, PACIFICA) subtracted effects several processes: evaporation precipitation, river discharge, nutrient uptake remineralization. remaining variation exhibits robust coherent pattern including features large amplitude extent. Most notably, residual more or less constant across low latitudes but shows strong poleward increase. There are differences ~110μmolkg-1 ~85μmolkg-1 between Southern Ocean subarctic North Pacific, respectively, but, contrast, little increase high-latitude Atlantic. This most likely due to production physical resupply deep waters. use corrections highlights errors that produced, particularly Bay Bengal Atlantic, if normalization assumes all salinities be caused by rainfall. can used as indicate where world's layer takes place, future changes calcification, instance acidification.

参考文章(78)
S. R. Cooley, V. J. Coles, A. Subramaniam, P. L. Yager, Seasonal variations in the Amazon plume‐related atmospheric carbon sink Global Biogeochemical Cycles. ,vol. 21, pp. 1- 15 ,(2007) , 10.1029/2006GB002831
Xinping Hu, Wei-Jun Cai, An assessment of ocean margin anaerobic processes on oceanic alkalinity budget Global Biogeochemical Cycles. ,vol. 25, ,(2011) , 10.1029/2010GB003859
Nicholas R. Bates, A. Christine Pequignet, Christopher L. Sabine, Ocean carbon cycling in the Indian Ocean: 1. Spatiotemporal variability of inorganic carbon and air‐sea CO2 gas exchange Global Biogeochemical Cycles. ,vol. 20, ,(2006) , 10.1029/2005GB002491
Reiner Schlitzer, Applying the adjoint method for biogeochemical modeling: Export of participate organic matter in the world ocean Inverse Methods in Global Biogeochemical Cycles. ,vol. 114, pp. 107- 124 ,(2000) , 10.1029/GM114P0107
R. M. Key, A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. L. Bullister, R. A. Feely, F. J. Millero, C. Mordy, T.-H. Peng, A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) Global Biogeochemical Cycles. ,vol. 18, pp. 1- 23 ,(2004) , 10.1029/2004GB002247
Tatjana Ilyina, Richard E. Zeebe, Ernst Maier-Reimer, Christoph Heinze, Early detection of ocean acidification effects on marine calcification Global Biogeochemical Cycles. ,vol. 23, ,(2009) , 10.1029/2008GB003278
R. A. Feely, C. L. Sabine, K. Lee, F. J. Millero, M. F. Lamb, D. Greeley, J. L. Bullister, R. M. Key, T.-H. Peng, A. Kozyr, T. Ono, C. S. Wong, In situ calcium carbonate dissolution in the Pacific Ocean Global Biogeochemical Cycles. ,vol. 16, pp. 91- 1 ,(2002) , 10.1029/2002GB001866